Mums are now a flower of a different color. Japanese researchers have added a hint of clear sky to the humble plant’s palette, genetically engineering the first-ever “true blue” chrysanthemum.
“Obtaining blue-colored flowers is the Holy Grail for plant breeders,” says Mark Bridgen, a plant breeder at Cornell University. The results are “very exciting.”
Compounds called delphinidin-based anthocyanin pigments are responsible for the natural blues in such flowers as pansies and larkspur. Mums lack those compounds. Instead, the flowers come in a variety of other colors, evoking fiery sunsets, new-fallen snow and all things chartreuse. In previous attempts to engineer a blue hue in chrysanthemums — and roses and carnations — researchers inserted the gene for a key enzyme that controls production of these compounds, causing them to accumulate. But the resulting blooms skewed more violet-purple than blue. True blue pigment remained elusive, scientists thought, because its origin was complex; multiple genes have been shown to be involved in its generation. But Naonobu Noda, of the National Agriculture and Food Research Organization in Tsukuba, Japan, and colleagues were surprised to find that inserting only two borrowed genes into chrysanthemums created blue flowers. One gene, from Canterbury bells, got the enzyme process started; the other, from butterfly peas, further tweaked the pigment molecules.
Together, the gene double-team transformed 19 of 32 mums, or 59 percent, of the Taihei variety from having pink or magenta blooms into blue beauties. Additional analyses revealed that the blue color arose because of molecular interactions between the tweaked pigment and certain colorless compounds naturally found in many plants, including chrysanthemums. The two-part method could possibly be used in the production of other blue flowers, the researchers report July 26 in Science Advances.
Nearly 5 percent of U.S. adults misused prescription opioids in 2015, a new study shows.
Based on the National Survey on Drug Use and Health, an in-person survey of more than 50,000 people, researchers estimate that 91.8 million, or 37.8 percent, of adults used prescription opioids in 2015. Some 11.5 million people misused the painkillers, and 1.9 million people reported opioid dependence or abuse, Beth Han of the Substance Abuse and Mental Health Services Administration in Rockville, Md., and colleagues report online August 1 in Annals of Internal Medicine. Relieving pain was the most commonly cited reason for people’s most recent episode of misuse — for 66 percent of those reporting misuse, such as using without a prescription, and nearly 49 percent of those with opioid dependence or abuse. (Respondents could report more than one reason for their last misuse.) These results underscore the need for improved pain management, the authors say.
With just weeks to go before the Great American Eclipse, scientists are finalizing years of planning to study the solar phenomenon. But it’s not too late to get involved.
“This is the first eclipse crossing over a major landmass in the era when lots of people have digital devices,” says astronomer Alex Filippenko of the University of California, Berkeley. The 120-kilometer-wide path of totality, where observers will see the moon completely cover the sun, will streak through 12 states from coast-to-coast on August 21, and the entire country will see at least a partial eclipse. So if you’re interested in collecting data on this rare celestial spectacle, there’s an app for that. Several, in fact.
Observe eclipse weather The GLOBE Program’s Observer app lets people to catalog changes in their local atmosphere that are affected by the amount of sunlight hitting Earth. Users can take pictures or enter descriptions of cloud cover, record temperatures and write in such observations as wind speed or air pressure if they have the equipment to make them.
“The eclipse allows us to see what happens when there’s a relatively abrupt drop in sunlight,” says Kristen Weaver of the GLOBE Observer program at NASA Goddard Space Flight Center in Greenbelt, Md. Even people who aren’t in the path of totality can contribute valuable data, Weaver says.
Students from kindergarten through high school will use the data in research projects through the GLOBE education program. And if enough people send in data, NASA researchers creating models of Earth’s energy budget — the balance between the energy our planet receives from the sun and sends back out into space — could also analyze the observations. Folks willing to take their eyes off the skies for a moment can record what plants and animals are doing around eclipse time using the California Academy of Sciences’ iNaturalist app.
Past eclipse-watchers have told tales of animals exhibiting nighttime behavior — such as birds falling silent or squirrels retreating to their dens — when the moon blocks the sun. The iNaturalist app could allow the first extensive examination of this phenomenon, says the Academy’s Elise Ricard.
People can use the app to note the behavior of whatever animals are around, be they pets, livestock, wildlife or even zoo animals. Some flowers also close up at night, Ricard notes, so plant observations are also encouraged.
The data could help scientists understand the extent of eclipse necessary to elicit certain responses. For instance, someone in an area where the moon covers 85 percent of the sun might notice odd animal behavior that isn’t seen by anyone in areas with only 70 percent coverage of the sun.
Record the sounds of an eclipse The sounds of nature can also change dramatically during an eclipse. Ricard remembers birds falling silent in the nearby jungle during an Australian eclipse. And Henry Winter, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., recalls a friend’s story of crickets starting to chirp during an eclipse.
To capture these shifting sounds, Winter launched the Eclipse Soundscapes project, which will collect recordings during the solar eclipse to provide an audio experience for the visually impaired.
Soundscapes’ reps will record at 12 national parks, and anyone with the app can add their own sound bites to the database. The app will also include a specially designed narration of what’s happening in the sky for visually impaired eclipse-goers.
Solar snapshots for science For anyone in the path of totality, there’s also the chance to participate in the Eclipse MegaMovie project, the first crowdsourced image archive of a total solar eclipse.
Viewed from any single place on the ground in the path of totality, the moon completely covers the sun for only about 2½ minutes. But by gathering images from over 1,000 trained volunteers and from members of the public snapping pics with smartphones across the country, the MegaMovie project will capture the full 90-minute duration of the solar eclipse as it crosses the continental United States.
The project will give astronomers an unprecedented view of the outer layers of the sun’s atmosphere — which aren’t blocked by the moon — during the entire eclipse.
Like the data collected by all these apps, the Eclipse MegaMovie images will be publicly available online, where they can be accessed by amateur astronomers, too. “They might notice some interesting phenomenon before professional astronomers get around to looking at the data,” Filippenko says.
It’s certainly an exciting time to be a citizen scientist. But if you do decide to participate in data collection, don’t forget to take time to put down your phone and enjoy the majesty of the eclipse.
Saber-toothed kittens were the spitting image of their parents. Even as babies, the cats not only had the oversized canine teeth but also unusually powerful forelimbs, Katherine Long, a graduate student at California State Polytechnic University in Pomona, and colleagues report September 27 in PLOS ONE.
As adults, the ferocious felines used those strong forelimbs to secure wriggling prey before slashing a throat or belly (thereby avoiding breaking off a tooth in the struggle). Paleontologists have puzzled over whether saber-toothed cats such as Smilodon fatalis developed those robust limbs as they grew.
To compare the growth rate of Smilodon with that of similar-sized non‒saber-toothed cats that lived alongside it, Long and her team turned to fossils collected from the La Brea Tar Pits in Los Angeles. The ancient asphalt traps hold a wealth of species and specimens from juveniles to adults, dating to between 37,000 and 9,000 years ago.
The Smilodon bones, they found, did not show any evidence of an unusual growth spurt. Instead, the bones grew longer and slimmer as the kittens grew up, following the same developmental pattern as the other large cats. That suggests that when it comes to their mighty forelimbs, Smilodon kittens were just born that way.
In a pitch-black rainforest with fluttering moths and crawling centipedes, Christina Warinner dug up her first skeleton. Well, technically it was a full skeleton plus two headless ones, all seated and draped in ornate jewelry. To deter looters, she excavated through the night while one teammate held up a light and another killed as many bugs as possible.
As Warinner worked, unanswerable questions about the people whose skeletons she was excavating flew through her mind. “There’s only so much you can learn by looking with your own eyes at a skeleton,” she says. “I became increasingly interested in all the things that I could not see — all the stories that these skeletons had to tell that weren’t immediately accessible, but could be accessible through science.”
At age 21, Warinner cut her teeth on that incredibly complex sacrificial burial left behind by the Maya in a Belize rainforest. Today, at age 37, the molecular anthropologist scrapes at not-so-pearly whites to investigate similar questions, splitting her time between the University of Oklahoma in Norman and the Max Planck Institute for the Science of Human History in Jena, Germany. In 2014, she and colleagues reported a finding that generated enough buzz to renew interest in an archaeological resource many had written off decades ago: fossilized dental plaque, or calculus. Ancient DNA and proteins in the plaque belong to microbes that could spill the secrets of the humans they once inhabited — what the people ate, what ailed them, perhaps even what they did for a living.
Bacteria form plaque that mineralizes into calculus throughout a person’s life. “It’s the only part of your body that fossilizes while you’re still alive,” notes Warinner. “It’s also the last thing to decay.”
Though plaque is prolific in the archaeological record, most researchers viewed calculus as “the crap you scraped off your tooth in order to study it,” says Amanda Henry, an archaeologist at Leiden University in the Netherlands. With some exceptions, molecular biologists saw calculus as a shoddy source of ancient DNA.
But a few researchers, including Henry, had been looking at calculus for remnants of foods as potential clues to ancient diets. Inspired by some of Henry’s images of starch grains preserved in calculus, Warinner wondered if the plaque might yield dead bacterial structures, perhaps even bacteria’s genetic blueprints.
Her timing couldn’t have been better. Warinner began her graduate studies at Harvard in 2004, just after the sequencing of the human genome was completed and by the time she left in 2010, efforts to survey the human microbiome were in full swing. As a postdoc at the University of Zurich, Warinner decided to attempt to extract DNA from the underappreciated dental grime preserved on the teeth of four medieval skeletons from Germany. At first, the results were dismal. But she kept at it. “Tina has a very interested, curious and driven personality,” Henry notes. Warinner turned to a new instrument that could measure DNA concentrations in skimpy samples, a Qubit fluorometer. A surprising error message appeared: DNA too high. Dental calculus, it turned out, was chock-full of genetic material. “While people were struggling to pull out human DNA from the skeleton itself, there’s 100 to 1,000 times more DNA in the calculus,” Warinner says. “It was sitting there in almost every skeletal collection untouched, unanalyzed.” To help her interpret the data, Warinner mustered an army of collaborators from fields ranging from immunology to metagenomics. She and her colleagues found a slew of proteins and DNA snippets from bacteria, viruses and fungi, including dozens of oral pathogens, as well as the full genetic blueprint of an ancient strain of Tannerella forsythia, which still infects people’s gums today. In 2014, Warinner’s team revealed a detailed map of a miniature microbial world on the decaying teeth of those German skeletons in Nature Genetics.
Later in 2014, her group found the first direct protein-based evidence of milk consumption in the plaque of Bronze Age skeletons from 3000 B.C. That same study linked milk proteins preserved in the calculus of other ancient human skeletons to specific animals — providing a peek into long-ago lifestyles.
“The fact that you can tell the difference between, say, goat milk and cow milk, that’s kind of mind-blowing,” says Laura Weyrich, a microbiologist at the University of Adelaide in Australia, who also studies calculus. Since then, Warinner has found all sorts of odds and ends lurking on archaic chompers from poppy seeds to paint pigments. Warinner’s team is still looking at the origins of dairying and its microbial players, but she’s also branching out to the other end of the digestive spectrum. The researchers are looking at ancient DNA in paleofeces, which is exactly what it sounds like — desiccated or semifossilized poop. It doesn’t stay as fresh as plaque in the archaeological record. But she’s managed to find some sites with well-preserved samples. By examining the array of microbes that lived in the excrement and plaque of past humans and their relatives, Warinner hopes to characterize how our microbial communities have changed through time — and how they’ve changed us.
The research has implications for understanding chronic, complex human diseases over time. Warinner’s ancient DNA work “opens up a window on past health,” says Clark Larsen, an anthropologist at Ohio State University.
It’s all part of what Warinner calls “the archaeology of the unseen.”
Editor’s note: This story was corrected on October 4, 2017, to note that the 2014 report on milk consumption was based on protein evidence, not DNA.
A founding father of behavioral economics — a research school that has popularized the practice of “nudging” people into making decisions that authorities deem to be in their best interests — has won the 2017 Nobel Memorial Prize in Economic Sciences.
Richard Thaler, of the University of Chicago Booth School of Business, received the award October 9 for being the leader of a discipline that has championed the idea of humans not as purely rational and selfish — as long posited by economists. Instead, he argues, we are driven by simple, often emotionally fueled assumptions that can lead us astray.
“Richard Thaler has pioneered the analysis of ways in which human decisions systematically deviate from traditional economic models,” says cognitive scientist Peter Gӓrdenfors of Lund University, Sweden, a member of the Economic Sciences Prize Committee.
Thaler argues that, even if people try to make good economic choices, our thinking abilities are limited. In dealing with personal finances, for instance, he finds that most people mentally earmark money into different accounts, say for housing, food, vacations and entertainment. That can lead to questionable decisions, such as saving for a vacation in a low-interest savings account while buying household goods with a high-interest credit card.
At an October 9 news conference at the University of Chicago, Thaler referenced mental accounting in describing what he would do with the roughly $1.1 million award. “Every time I spend any money on something fun, I’ll say it came from the Nobel Prize.”
Thaler’s research has also focused on how judgments about fairness, such as sudden jumps in the prices of consumer items, affect people’s willingness to buy those items. A third area of his research finds that people’s short-term desires often override long-term plans. A classic example consists of putting off saving for retirement until later in life.
That research in particular inspired his 2008 book Nudge: Improving Decisions about Health, Wealth and Happiness, coauthored by Cass Sunstein, now at Harvard Law School. Nudging, also known as libertarian paternalism, is a way for public and private institutions to prod people to make certain decisions (SN: 3/18/17, p. 18). For instance, employees more often start saving for retirement early in their careers when offered savings plans that they must opt out of. Many governments, including those of the United Kingdom and the United States, have funded teams of behavioral economists, called nudge units, to develop ways to nudge people to, say, apply for government benefits or comply with tax laws. A total of 75 nudge units now exist worldwide, Thaler said at the news conference.
Nudging has its roots in a line of research, dubbed heuristics and biases, launched in the 1970s by two psychologists — 2002 economics Nobel laureate Daniel Kahneman of Princeton University and the late Amos Tversky of Stanford University. Investigators in heuristics and biases contend that people can’t help but make many types of systematic thinking errors, such as being overconfident in their decisions.
Thaler, like Kahneman, views the mind as consisting of one system for making rapid, intuitive decisions that are often misleading and a second system for deliberating slowly and considering as much relevant information as possible.
Despite the influence of Thaler’s ideas on research and social policy, they are controversial among decision researchers (SN: 6/4/11, p. 26). Some argue that nudging overlooks the power of simple rules-of-thumb for making decisions that people can learn to wield on their own.
“I don’t think I’ve changed everybody’s minds,” Thaler said. “But many young economists embrace behavioral economics.”
Imagine a world where the polar ice sheets are melting, sea level is rising and the atmosphere is stuffed with about 400 parts per million of carbon dioxide. Sound familiar? It should. We’re living it. But the description also matches Earth a little over 3 million years ago, in the middle of the geologic epoch known as the Pliocene.
To understand how our planet might respond as global temperatures rise, scientists are looking to warm periods of the past. These include the steamy worlds of the Cretaceous Period, such as around 90 million years ago, and the boundary of the Paleocene and Eocene epochs, about 56 million years ago. But to many researchers, the best reference for today’s warming is the more recent Pliocene, which lasted from 5.3 million to 2.6 million years ago. The mid-Pliocene was the last time atmospheric CO2 levels were similar to today’s, trapping heat and raising global temperatures to above the levels Earth is experiencing now.
New research is illuminating how the planet responded to Pliocene warmth. One set of scientists has fanned out across the Arctic, gathering geologic clues to how temperatures there may have been as much as 19 degrees Celsius higher than today. The warmth allowed trees to spread far to the north, creating Arctic forests where three-toed horses, giant camels and other animals roamed. When lightning struck, wildfires roared across the landscape, spewing soot into the air and altering the region’s climate. Other researchers are pushing the frontiers of climate modeling, simulating how the oceans, atmosphere and land responded as Pliocene temperatures soared. One new study shows how the warmth may have triggered huge changes in ocean circulation, setting up an enormous overturning current in the Pacific Ocean, similar to the “conveyor belt” in today’s Atlantic that drives weather and climate. A second new paper suggests that the Greenland and Antarctic ice sheets might have responded differently to Pliocene heat, melting at different times.
All this research into the last great warm period is helping scientists think more deeply about how the future might play out. It may not be a road map to the next 100 years, but the Pliocene is a rough guide to the high sea levels, vanishing ice and altered weather patterns that might arrive hundreds to thousands of years from now.
“It’s a case study for understanding how warm climates function,” says Heather Ford, a paleoceanographer at the University of Cambridge. “It’s our closest analog for future climate change.”
Walk through history Teasing out the history of the Pliocene is a little like digging through a family’s past. One group of enthusiasts goes through genealogical records, collecting data on who lived where, and when. Another group uses computer software and modeling to look for broad patterns that describe how the family grew and moved over time.
The data detectives begin their work in rocks and sediments dating to the Pliocene that are scattered around the world like family-tree histories in city library archives. In 1988, the U.S. Geological Survey began a project called PRISM, for Pliocene Research, Interpretation and Synoptic Mapping, which aims to gather as many geologic clues as possible about Pliocene environments. At its start, PRISM focused on a collection of deep-sea cores drilled from the floor of the North Atlantic Ocean. Different types of marine organisms thrive in water of different temperatures. By comparing the relative abundance of species of tiny organisms preserved in the deep-sea cores, PRISM scientists could roughly map how cold-loving organisms gave way to warm ones (and vice versa) at different times in the past. Early results from the project, reported in 1992 by USGS research geologist Harry Dowsett and colleagues, showed that during the Pliocene, warming was amplified at higher latitudes in the North Atlantic.
Scientists continue to add to the PRISM records. One international team drilled a sediment core from beneath a Siberian lake and found that summer air temperatures there, in the mid-Pliocene, were as high as 15° C (about 59° Fahrenheit). That’s 8 degrees warmer than today (SN: 6/15/13, p. 13). Other researchers uncovered clues, such as plant fossils from peat bogs, that suggest mean annual temperatures on Canada’s now-frozen Ellesmere Island near Greenland were as much as 18 degrees higher than today (SN: 4/6/13, p. 9).
Now, a new group of biologists, geoscientists and other experts in past landscapes have banded together in a project called PoLAR-FIT, for Pliocene Landscape and Arctic Remains — Frozen in Time. The team is focusing on the Arctic because, just as today’s Arctic is warming faster than other parts of the planet, the Pliocene Arctic warmed more than the rest of the globe. “That’s what we call polar amplification,” says Tamara Fletcher, a team member and paleoecologist at the University of Montana in Missoula. “It was even more magnified in the Pliocene than what we’re seeing today.”
PoLAR-FIT scientists travel to the Arctic to collect geologic evidence about how the region responded to rising temperatures in the Pliocene. In the thawing permafrost slopes of Ellesmere Island, for instance, Fletcher and colleagues have been mapping black layers of charcoal in sediments dating from the Pliocene. Each charcoal layer represents a fire that burned through the ancient forest. By tracking the events across Ellesmere and other nearby islands, Fletcher’s team discovered that fire was widespread across what is now the Canadian Arctic. Wildfires changed vegetation across the landscape, possibly altering how the Arctic responded to rising temperatures. Soot rising from the fires would have darkened the skies, potentially leading to local or regional weather changes. “How important is that to the warming?” asks Bette Otto-Bliesner, a paleoclimatologist at the National Center for Atmospheric Research in Boulder, Colo. “That’s something we’re still trying to determine.” Fletcher, Otto-Bliesner and colleagues described the charcoal discovery, along with modeling studies of the fires’ effects, in Seattle in October at a meeting of the Geological Society of America.
In 2012, about 283,280 square kilometers of forest burned in Russia. Three years later, more than 20,230 square kilometers burned in Alaska. Last summer, a wildfire broke out in the icy landscape of western Greenland. “We’re already seeing fire in the Arctic, which is unusual today,” Fletcher says. “But it wouldn’t have been unusual in the Pliocene.”
While the work doesn’t predict how much of the Arctic will burn as temperatures rise, the findings do suggest that people need to prepare for more fires in the future. Trapped ocean heat Scientists like Fletcher are the genealogists of the Pliocene, collecting records of past environments. Other researchers — the computer modelers — put those old records into broad context, like historians analyzing family trees for patterns of migration and change.
The modelers begin with data on Pliocene temperatures — such as how hot it got on Ellesmere Island or in the North Atlantic Ocean, as revealed by plant fossils or seafloor sediments. Scientists can also estimate how much CO2 was in the atmosphere at the time by looking at clues such as the density of holes in fossilized leaves of Pliocene plants, which used those openings to take up CO2. Estimates vary, but most suggest CO2 levels were about 350 to 450 ppm in the mid-Pliocene. It’s not clear what caused the gas buildup during the Pliocene; one possibility is it came from long-term changes in the way carbon cycles between the land, ocean and atmosphere. But no matter the source, the high levels of CO 2 caused temperatures to soar by trapping heat in the atmosphere. The Pliocene isn’t a perfect crystal ball for today. For starters, scientists know why CO2 levels are now increasing — burning of fossil fuels and other human activities (SN: 5/30/15, p. 15). As the Industrial Revolution was gaining steam, in the 19th century, atmospheric CO2 levels were around 280 ppm. Today that level is just above 400 ppm, and rising.
Modeling the Pliocene climate can help reveal how Earth responded in somewhat similar conditions. That means studying changes in the Pliocene atmosphere, the land surface and most of all the oceans, which absorb the bulk of planetary warming. “That’s the sort of thing you can understand from studying past warm episodes,” Ford says. “What was different about how heat and carbon were moving around in the ocean?”
Ford has begun working with climatologist Natalie Burls of George Mason University in Fairfax, Va., to try to track how the oceans’ major water masses shifted during the Pliocene. Today the North Atlantic has a deep, cold, salty layer that is crucial to the ocean’s “conveyor belt” circulation. In this pattern, warm waters flow northward from the tropics, then cool and become saltier and denser as they reach higher latitudes. That cool water sinks and travels southward, where it warms and rises and begins the cycle all over again.
This conveyor belt circulation is important to today’s Atlantic climate, because it allows the warm Gulf Stream to moderate temperatures from the U.S. East Coast to Western Europe. Burls and colleagues have now found that a similar pattern might have existed in the Pacific during the Pliocene. They call it the Pacific meridional overturning circulation, or PMOC, just as today’s similar Atlantic circulation is known as the AMOC.
Burls’ team discovered this phenomenon by modeling how the Pliocene ocean would have responded to higher temperatures. Because the Arctic was so warm, the temperature difference between the equator and the mid- and high latitudes was not as great as it is today. The weaker temperature gradient would have meant less rainfall and more evaporation in the midlatitude North Pacific. As a result, its uppermost waters would have gotten saltier. When the North Pacific waters got salty enough, they cooled and sank, setting up an enormous current that dove deep off the coast of northeastern Russia and traveled southward until the water warmed enough to once again rise toward the surface. Real-world data back the claim: Accumulations of calcium carbonate in deep-sea Pacific sediments show that the Pliocene ocean experienced huge shifts at the time, with waters churning all the way from the surface down to about three kilometers deep, as would be expected from a conveyor belt–type circulation. The team reported the finding in Science Advances in September.
What happened in the Pliocene Pacific may say something about the Pacific of the distant future, Burls says. As temperatures rise today, most of the heat is being taken up by the surface layers of the oceans. Over the short term, that works to prevent changes in deep ocean circulation. “Today we’re very quickly turning on the heating, and it will take a while for the deep ocean to adjust,” Burls says.
But in the longer term, thousands of years from now, waters in the North Pacific may eventually become warm and salty enough to establish a PMOC, just as there was in the Pliocene. And that could lead to major changes in weather and climate patterns around the globe.
Land bridges and ice sheets Other modelers are looking beyond the Pacific to improve their understanding of how different parts of the Pliocene world behaved. About a dozen research groups recently launched a new effort called PlioMIP2, or Pliocene Model Intercomparison Project, Phase 2, to model the climate of a time somewhat similar to today in the mid-Pliocene, about 3.205 million years ago.
“We’re working to produce the best picture that we can of what life seemed to be like at the time,” says Alan Haywood, a climate modeler at the University of Leeds in England and a leader of the effort.
In one discovery, project scientists have found that small changes in the geography of their modeled world make a big improvement in the final results. Early models did not accurately capture how much the polar regions heated up. So PlioMIP2 researchers updated their starting conditions. Instead of assuming that the landmasses of the Pliocene world were identical to today, the group made two small, plausible changes in the Arctic. The researchers made a land bridge between Russia and Alaska by closing the Bering Strait, and they added land to connect a few modern islands in the Canadian Arctic, including Ellesmere.
The change “seems small, but it actually can have a huge impact on climate,” says Otto-Bliesner. For instance, closing the Bering Strait cut off a flow in which relatively fresh water from the Pacific travels over the Arctic and into the North Atlantic. With the updated geography, the PlioMIP2 models suddenly did a much better job of simulating heat in the high Arctic.
Otto-Bliesner will describe the team’s results in New Orleans this month at a meeting of the American Geophysical Union. Another PlioMIP2 group, Deepak Chandan and Richard Peltier of the University of Toronto, reported similar findings in July in Climate of the Past. They too found that closing the Bering Strait allowed their model to better simulate the Arctic heating.
Other Pliocene modelers are trying to figure out how the planet’s enormous ice sheets in Greenland and Antarctica might respond to rising temperatures. Geologic evidence, such as ancient beaches from the Pliocene, suggest that global sea levels then were as much as 25 meters higher than today. If all of Greenland’s ice were to melt, global sea levels would rise about six meters; if all of Antarctica went, it would contribute about 60 meters. So parts of these ice sheets, but not all, must have melted during the long-ago warm period.
Several of the PlioMIP2 research groups are modeling how the polar ice sheets responded in the heat of the Pliocene. “It will tell us how much we should be worried,” Otto-Bliesner says. One new study suggests that the northern and southern ice sheets may have behaved out of phase with each other. In a simulation of the mid- to late Pliocene, climate modeler Bas de Boer of Utrecht University in the Netherlands and colleagues found that as Greenland’s ice melted, Antarctica’s ice could have been relatively stable, and vice versa.
“At different points, they could be contributing to the sea level story or against it,” says Haywood. He, along with colleagues, reported the results in the Oct. 30 Geophysical Research Letters.
That out-of-sync melting suggests the Pliocene was a complicated time. Just because global temperatures were high doesn’t mean that all of Earth’s ice sheets melted equally. (Today, both Greenland and West Antarctica are losing ice to the oceans as global temperatures rise.)
The Pliocene wound to an end around 2.6 million years ago, as CO2 levels dropped. Chemical reactions with eroding rocks may have sucked much of the CO2 out of the atmosphere and tucked it away in the oceans, removing the greenhouse gas. The planet entered a long-term cooling trend. Since the end of the Pliocene, Earth has been in and out of a series of ice ages.
But now, greenhouse gases are once again flooding into the atmosphere. Global temperatures are ticking up inexorably year after year. That makes the lessons of the past all the more relevant for the future.
Youngsters have probably been playing their way into cultural competence for at least tens of thousands of years. So why are signs of children largely absent from the archaeological record?
A cartoon that Biblical scholar Kristine Garroway taped up in her college dorm helps to explain kids’ invisibility at ancient sites: Two men in business suits stare intently at an unidentifiable round object sitting on a table. “Hey, what’s this?” asks the first guy. “I dunno, probably a toy … or a religious object,” says the second. Archaeologists have long tended to choose the second option, says Garroway, now a visiting scientist at Hebrew Union College–Jewish Institute of Religion in Los Angeles. Ambiguous finds, such as miniature pottery vessels and small figurines, get classified as ritual or decorative objects. Some of these artifacts undoubtedly were used in ceremonies. But not all of them, Garroway argues. Of 48 miniature clay vessels excavated from inside roughly 3,650- to 4,000-year-old houses at Israel’s Tel Nagila site, 10 retained fingerprints the size of children’s that were made during the shaping of soft clay, before the clay was heated and hardened, archaeologists reported in 2013. Kids must have made those somewhat unevenly shaped jars and bowls, each easily held within a child’s hand, concluded Joe Uziel of the Israel Antiquities Authority in Jerusalem and independent Israeli researcher Rona Avissar Lewis in Palestine Exploration Quarterly. Unusual finds in Israel dating to around 3,000 years ago also represent children’s early attempts to mimic adult craftwork, Garroway said in a November 18 presentation in Boston at the annual meeting of the American Schools of Oriental Research. Numerous rounded clay disks, each pierced with two holes, have mystified investigators for nearly a century. As early as 1928, an archaeologist suggested that these button-sized objects were toys. After passing a string through both of a disk’s holes and tying the ends together, a youngster could swing the string to wind up the toy and then pull both ends of the string to make the disk spin. Clay disks from six Israeli sites can be separated into those made by skilled artisans and others — featuring rough edges and unevenly spaced holes — made by novices, including children, Garroway proposes. If those items were toys, sloppy execution may have partly resulted from children’s impatience to play with the final product, she suspects.
Garroway’s proposal appears likely, especially in light of evidence that more than 10,000 years earlier, people in France and Spain made similar spinning disks decorated with animals that appeared to move as the toy twirled (SN: 6/30/12, p. 12), says archaeologist Michelle Langley of Griffith University in Brisbane, Australia.
Western European finds from as early as 14,000 to 21,000 years ago also may have gone unrecognized as children’s toys, Langley suggests in a paper published this month in the Oxford Journal of Archaeology. One specimen, a cave lion carved out of a reindeer’s antler, displays so much polish from handling that children may have played with the item for years, she says. Some bone spearpoints with broken tips bear signs of unskilled repair, suggesting adults gave the damaged weapons to children to practice bone-working skills and perhaps play with, she adds.
Proxima Centauri has a temper. Earth’s nearest planet-hosting neighbor released a gigantic flare in March 2017, a new analysis of observations of the star shows. And that’s bad news for the potential for life on the star’s planet, Proxima b.
The star got 1,000 times brighter over 10 seconds before dimming again. That can best be explained by an enormous stellar flare, astronomer Meredith MacGregor of the Carnegie Institution for Science in Washington, D.C., and colleagues report February 26 in Astrophysical Journal Letters. Because Proxima b is so much closer to its star than Earth is to the sun, the flare would have blasted Proxima b with 4,000 times more radiation than Earth typically gets from the sun’s flares. “If there are flares like this at all frequently, then [the exoplanet] is likely not in the best shape,” MacGregor says.
Proxima b was one of the most sought-after sites for finding life outside the solar system. Just four light-years away, it has a mass about the same as Earth’s and probably has temperatures suitable for liquid water (SN: 12/24/16, p. 20). But its star is an M dwarf, a class of small dim stars notoriously prone to flares that could rip away their planets’ atmospheres (SN: 6/24/17, p. 18). MacGregor and her colleagues reanalyzed data from a recent study led by astronomer Guillem Anglada of the Institute of Astrophysics of Andalusia in Granada, Spain. Anglada and his colleagues had observed Proxima Centauri with the Atacama Large Millimeter Array telescopes in Chile. The team saw extra light that it interpreted as a ring of dust analogous to the solar system’s Kuiper Belt, scattering the light in all directions, the team reported November 15 in Astrophysical Journal Letters. But Anglada and his colleagues had averaged the amount of light over 10 hours of observations. That smeared out any short-term changes in the star’s brightness — such as a bright flare.
When MacGregor’s team reanalyzed the data, they found that all the excess light came from the same two-minute period on March 24. A massive flare explains all the extra light, she says — none of it was masquerading as a glittering dust ring.
Anglada says he and his colleagues are aware of the March 24 flare and are currently revising their original claim. But he says the flare can’t account for all the extra light, so the dust ring theory might still survive.
Physicist Stephen Hawking, a black hole whisperer who divined secrets of the universe’s most inscrutable objects, died March 14 at age 76. In addition to his scientific research, Hawking, a professor at the University of Cambridge, was known for his popular science books, including the best-selling A Brief History of Time, which captivated readers with lucid explanations of the universe’s birth and the physical laws that rule the cosmos.
In one of his best-known discoveries, Hawking determined that black holes are not truly black. Instead, they emit a faint haze of particles, known as Hawking radiation (SN: 5/31/14, p. 16). This discovery, which arose at the interface of gravity and quantum mechanics, had remarkable consequences. It suggested that black holes are not eternal, but eventually evaporate. That led to a conundrum known as the black hole information paradox (SN: 10/3/15, p. 10): When a black hole disappears, what happens to the information that fell into it? Physicists are still puzzling over that question.
In the face of physical disabilities due to amyotrophic lateral sclerosis, which profoundly limited his mobility and ability to communicate, Hawking became one of science’s most well-known figures, and survived far beyond the timeline initially expected given his condition.
Science News has covered Hawking’s work extensively over the past decades, including his four laws of black hole mechanics, his work on miniature black holes and, most recently, Hawking’s search for a solution to the black hole paradox.