Power systems transcended kinship in medieval Europe. A burial site in southern Germany contains members of a powerful warrior family who journeyed widely to find recruits to join the household and support a post-Roman kingdom, a new study suggests.
Thirteen individuals interred at Niederstotzingen belonged to the Alemanni, a confederation of Germanic tribes that were conquered by and integrated into a neighboring kingdom of the Frankish people starting around 1,400 years ago, researchers say. Excavations in 1962 revealed the bodies, which the team estimates were buried from roughly 580 to 630, along with various weapons, armor, jewelry, bridle gear and the remains of three horses. DNA extracted from the German skeletons identified 11 as probably males, biomolecular archaeologist Niall O’Sullivan of Eurac Research’s Institute for Mummy Studies in Bolzano, Italy, and colleagues report online September 5 in Science Advances. Six skeletons displayed genetic ties to modern northern and eastern Europeans. All but one of those six were closely related, including a father and two of his sons. Chemical analyses of tooth enamel, which provides regional signals of early childhood diet, indicated that these individuals grew up near Niederstotzingen.
Artifacts from three foreign medieval European cultures lay in the graves of four local males. Weapons and other objects typical of the Franks accompanied one man — the previously mentioned father — who may have headed the power household, the researchers suspect. Another three individuals buried at the site were genetically unrelated to anyone else. Two possessed DNA like that of present-day Mediterranean people. All had spent their childhoods in other regions, tooth data suggest.
The new results support previous suggestions that, shortly after the Roman Empire’s fall in the fifth century (SN: 4/29/17, p. 18), the Frankish Empire maintained power throughout central Europe for several centuries by establishing mobile, warrior households that enforced obedience to the ruler.
A new hexagon has emerged high in the skies over Saturn’s north pole.
As spring turned to summer in the planet’s northern hemisphere, a six-sided vortex appeared in the stratosphere. Surprisingly, the polar polygon seems to mirror the famous hexagonal cyclone that swirls in the clouds hundreds of kilometers below, researchers report online September 3 in Nature Communications.
When NASA’s Cassini spacecraft arrived at Saturn in 2004 — during summer in the southern hemisphere — the probe spied a similar vortex in the stratosphere over the south pole, though that one was shaped more like a plain old circle. As summer gradually turned to autumn, that vortex vanished. Now, planetary scientist Leigh Fletcher at the University of Leicester in England and colleagues report that Cassini caught a new vortex growing in the north during the spacecraft’s final years. Relying on infrared maps of the atmosphere, the team found that from 2014 to 2017 a warm, swirling mass of air started developing over the north pole. That wasn’t surprising — but the six-sided shape came as a bit of a shock.
The shape suggests that the underlying hexagon somehow controls what happens in the stratosphere. These sorts of insights could help researchers understand how energy moves around in other planetary atmospheres.
Unfortunately, Cassini is no longer around — it dove into Saturn last year (SN: 9/2/17, p. 16). But Earth-based telescopes will keep an eye on the storm to see how it changes along with Saturn’s seasons.
Life on a volcanic isle appears to give barn owls a blush of red-brown plumage.
The high-sulfur environment on such islands influences the birds’ coloration, researchers report March 13 in the Journal of Biogeography. Darker feathers might also play a role in detoxifying harmful sulfur-based chemicals or help the owls blend in better with the islands’ humid, shadowy forest backdrop. The findings are among the first evidence that environmental sources of sulfur — such as the soil — can influence the color of integument like fur or feathers. Barn owls (Tyto alba) are found across most continents and on many islands. The owls’ plumage varies considerably across the globe, with bellies ranging from almost completely white to a much darker copper color.
In 2021, evolutionary ecologist Andrea Romano and his colleagues discovered that barn owls on some islands are paler than mainland populations. “However, such a difference disappears on small and remote islands and archipelagos, where in some cases, owls are darker than the continental ones,” says Romano, of the University of Milan.
The researchers wondered if there was something special about these smaller, more isolated islands that was causing a color pattern reversal in the owls: sulfur. Many of the remote islands are volcanic in origin, with volcanoes loading the air and soil with sulfur dioxide. Sulfur also has a crucial role in the development of some melanin pigments. For instance, pheomelanin — which is biochemically built using sulfur compounds — imparts a reddish hue in vertebrate soft tissues, while eumelanin, which creates blacks and dark browns, doesn’t rely on sulfur.
Some studies have linked sulfur-rich diets or artificial sulfur sources like pollution to plumage and fur color, Romano says. So the team hypothesized that a volcanic environment full of sulfur might encourage the owls to produce more pheomelanin, making their plumage darker.
The researchers examined the preserved, feather-covered skins of more than 2,000 barn owl museum specimens from dozens of island groups. They scored the relative redness of the owls’ belly plumage, finding an average color for each geographic location. On islands with sulfur-rich volcanic soils or recently active volcanoes — such as Sulawesi in Indonesia or the Canary Islands — the owls had darker, redder plumage than those on nonvolcanic islands such as Tasmania, the team found.
The influence of volcanic sulfur on barn owl colors explains less than 10 percent of the color variation, the researchers estimate. Other inputs like genetics play a major role. For instance, one gene called MC1R is responsible for as much as 70 percent of the color variation, says Thomas Kvalnes, an ecoevolutionary biologist at the Norwegian Institute for Nature Research in Trondheim who was not involved with this study.
“Still there is variation left to explain, both within and between populations,” Kvalnes says. “This is where different environmental factors need to be taken into account.” It’s possible that sulfur-driven colors provide benefits to the owls, Romano says. Volcanic islands are often thick with vegetation supported by dark, fertile soil. Darker feathers might help the predatory owls disappear into their forest surroundings. The owls might also avoid the toxic effect of high sulfur exposure by shuttling a glut of sulfur into making more pheomelanin. Melanin has been previously tied to detoxifying pollutants in sea snakes, for instance (SN: 8/14/17).
Among birds, the connection between plumage color and volcanic sulfur might not be limited to just barn owls. Multiple bird species in Iceland, for example, are getting a pheomelanin boost from environmental sulfur, another group reported February 25 in the Journal of Ornithology. But some of these are migratory birds, Kvalnes points out, which dilutes the link between the local setting and the level of pigmentation.
It’s also possible the volcanic sulfur–pheomelanin relationship is even more widespread in vertebrates. “Studies on different species are highly needed to confirm whether this pattern is general,” Romano says. “Theoretically, however, the same process should apply to at least other birds and mammals.”
Romano is also interested in investigating how the sulfur is moving from the environment into the plumage pigmentation. Is it through the diet? The water? Maybe the air? “We know nothing about how sulfur reaches the soft tissues of this top predator,” he says.
A neutron star pileup may have emitted two different kinds of cosmic signals: ripples in spacetime known as gravitational waves and a brief blip of energy called a fast radio burst.
One of the three detectors that make up the gravitational wave observatory LIGO picked up a signal from a cosmic collision on April 25, 2019. About 2.5 hours later, a fast radio burst detector picked up a signal from the same region of sky, researchers report March 27 in Nature Astronomy. If strengthened by further observations, the finding could bolster the theory that mysterious fast radio bursts have multiple origins — and neutron star mergers are one of them.
“We’re 99.5 percent sure” the two signals came from the same event, says astrophysicist Alexandra Moroianu, who spotted the merger and its aftermath while at the University of Western Australia in Perth. “We want to be 99.999 percent sure.”
Unfortunately, LIGO’s two other detectors didn’t catch the signal, so it’s impossible to precisely triangulate its location. “Even though it’s not a concrete, bang-on observation for something that’s been theorized for a decade, it’s the first evidence we’ve got,” Moroianu says. “If this is true … it’s going to be a big boom in fast radio burst science.”
Mysterious radio bursts Astronomers have spotted more than 600 fast radio bursts, or FRBs, since 2007. Despite their frequency, the causes remain a mystery. One leading candidate is a highly magnetized neutron star called a magnetar, which could be left behind after a massive star explodes (SN: 6/4/20). But some FRBs appear to repeat, while others are apparent one-off events, suggesting that there’s more than one way to produce them (SN: 2/7/20).
Theorists have wondered if a collision between two neutron stars could spark a singular FRB, before the wreckage from the collision produces a black hole. Such a smashup should emit gravitational waves, too (SN: 10/16/17).
Moroianu and colleagues searched archived data from LIGO and the Canadian Hydrogen Intensity Mapping Experiment, or CHIME, a fast radio burst detector in British Columbia, to see if any of their signals lined up. The team found one candidate pairing: GW190425 and FRB20190425A. Even though the gravitational wave was picked up only by the LIGO detector in Livingston, La., the team spotted other suggestive signs that the signals were related. The FRB and the gravitational waves came from the same distance, about 370 million light-years from Earth. The gravitational waves were from the only neutron star merger LIGO spotted in that observing run, and the FRB was particularly bright. There may even have been a burst of gamma rays at the same time, according to satellite data — another aftereffect of a neutron star merger.
“Everything points at this being a very interesting combination of signals,” Moroianu says. She says it’s like watching a crime drama on TV: “You have so much evidence that anyone watching the TV show would be like, ‘Oh, I think he did it.’ But it’s not enough to convince the court.”
Neutron star secrets Despite the uncertainty, the finding has exciting implications, says astrophysicist Alessandra Corsi of Texas Tech University in Lubbock. One is the possibility that two neutron stars could merge into a single, extra-massive neutron star without immediately collapsing into a black hole. “There’s this fuzzy dividing line between what’s a neutron star and what’s a black hole,” says Corsi, who was not involved in the new work.
In 2013, astrophysicist Bing Zhang of the University of Nevada, Las Vegas suggested that a neutron star smashup could create an extra-massive neutron star that wobbles on the edge of stability for a few hours before collapsing into a black hole. In that case, the resulting FRB would be delayed — just like in the 2019 case.
The most massive neutron star yet observed is about 2.35 times the mass of the sun, but theorists think they could grow to be around three times the mass of the sun without collapsing (SN: 7/22/22). The neutron star that could have resulted from the collision in 2019 would have been 3.4 solar masses, Moroianu and colleagues calculate.
“Something like this, especially if it’s confirmed with more observations, it would definitely tell us something about how neutron matter behaves,” Corsi says. “The nice thing about this is we have hopes of testing this in the future.”
The next LIGO run is expected to start in May. Corsi is optimistic that more coincidences between gravitational waves and FRBs will show up, now that researchers know to look for them. “There should be a bright future ahead of us,” she says.
A rocky planet that circles a small star nearly 40 light-years from Earth is hot and has little or no atmosphere, a new study suggests. The finding raises questions about the possibility of atmospheres on the other orbs in the planetary system.
At the center of the system is the red dwarf star dubbed TRAPPIST-1; it hosts seven known planets with masses ranging from 0.3 to 1.4 times Earth’s, a few of which could hold liquid water (SN: 2/22/17; 3/19/18). The largest, TRAPPIST-1b, is the closest to its parent star and receives about four times the radiation Earth receives from the sun, says Thomas Greene, an astrobiologist at NASA’s Ames Research Center at Moffett Field, Calif. Like all other planets in the system, TRAPPIST-1b is tidally locked, meaning that one side of the planet always faces the star, and one side looks away. Calculations suggest that if the stellar energy falling on TRAPPIST-1b were distributed around the planet — by an atmosphere, for example — and then reradiated equally in all directions, the planet’s surface temperature would be around 120° Celsius.
But the dayside temperature of the planet is actually around 230° C, Greene and colleagues report online March 27 in Nature. That, in turn, suggests that there’s little or no atmosphere to carry heat from the perpetually sunlit side of the planet to the dark side, the team argues.
To take TRAPPIST-1b’s temperature, Greene and his colleagues used the James Webb Space Telescope to observe the planet in a narrow band of infrared wavelengths five times in 2022. Because the observations were made just before and after the planet dodged behind its parent star, astronomers could see the fully lit face of the planet, Greene says.
The team’s results are “the first ‘deep dive’ look at this planet,” says Knicole Colon, an astrophysicist at NASA’s Goddard Space Flight Center in Greenbelt, Md, who was not involved with the study. “With every observation, we expect to learn something new,” she adds.
Astronomers have long suggested that planets around red dwarf stars might not be able to hold onto their atmospheres, largely because such stars’ frequent and high-energy flares would blast away any gaseous shroud they might have during their early years (SN: 12/20/22). Yet there are some scenarios in which such flares could heat up a planet’s surface and drive volcanism that, in turn, yields gases that could help form a new atmosphere.
“To be totally sure that this planet has no atmosphere, we need many more measurements,” says Michaël Gillon, an astrophysicist at the University of Liège in Belgium who was not part of the new study. It’s possible that when observed at a wider variety of wavelengths and from other angles, the planet could show signs of a gaseous shroud and thus possibly hints of volcanism.
Either way, says Laura Kriedberg, an astronomer at the Max Planck Institute for Astronomy in Heidelberg, Germany, who also did not participate in the study, the new result “definitely motivates detailed study of the cooler planets in the system, to see if the same is true of them.”
Most U.S. government attempts to quantify the costs and benefits of protecting the country’s bodies of water are likely undervaluing healthy lakes and rivers, researchers argue in a new study. That’s because some clean water benefits get left out of the analyses, sometimes because these benefits are difficult to pin numbers on. As a result, the apparent value of many environmental regulations is probably discounted.
The study, published online October 8 in the Proceedings of the National Academy of Sciences, surveyed 20 government reports analyzing the economic impacts of U.S. water pollution laws. Most of these laws have been enacted since 2000, when cost-benefit analyses became a requirement. Analysis of a measure for restricting river pollution, for example, might find that it increases costs for factories using that river for wastewater disposal, but boosts tourism revenues by drawing more kayakers and swimmers. Only two studies out of 20 showed the economic benefits of these laws exceeding the costs. That’s uncommon among analyses of environmental regulations, says study coauthor David Keiser, an environmental economist at Iowa State University in Ames. Usually, the benefits exceed the costs.
So why does water pollution regulation seem, on paper at least, like such a losing proposition?
Keiser has an explanation: Summing up the monetary benefits of environmental policies is really hard. Many of these benefits are intangible and don’t have clear market values. So deciding which benefits to count, and how to count them, can make a big difference in the results. Many analyses assume water will be filtered for drinking, Keiser says, so they don’t count the human health benefits of clean lakes and rivers (SN: 8/18/18, p. 14). That’s different from air pollution cost-benefit studies, which generally do include the health benefits of cleaner air by factoring in data tracking things like doctor’s visits or drug prescriptions. That could explain why Clean Air Act rules tend to get more favorable reviews, Keiser says — human health accounts for about 95 percent of the measured benefits of air quality regulations.
“You can avoid a lake with heavy, thick, toxic algal blooms,” Keiser says. “If you walk outside and have very polluted air, it’s harder to avoid.”
But even if people can avoid an algae-choked lake, they still pay a price for that pollution, says environmental scientist Thomas Bridgeman, director of the Lake Erie Center at the University of Toledo in Ohio. Communities that pull drinking water from a lake filled with toxic blooms of algae or cyanobacteria spend more to make the water safe to drink. Bridgeman’s seen it firsthand: In 2014, Lake Erie’s cyanobacteria blooms from phosphorus runoff shut down Toledo’s water supply for two days and forced the city to spend $500 million on water treatment upgrades.
Most of the studies surveyed by Keiser and his team were missing other kinds of benefits, too. The reports usually left out the value of eliminating certain toxic and nonconventional pollutants — molecules such as bisphenol A, or BPA, and perfluorooctanoic acid, or PFOA (SN: 10/3/15, p. 12). In high quantities, these compounds, which are used to make some plastics and nonstick coatings, can cause harm to humans and wildlife. Many studies also didn’t include discussion of how the quality of surface waters can affect groundwater, which is a major source of drinking water for many people.
A lack of data on water quality may also limit studies, Keiser’s team suggests. While there’s a national database tracking daily local air pollution levels, the data from various water quality monitoring programs aren’t centralized. That makes gathering and evaluating trends in water quality harder.
Plus, there are the intangibles — the value of aquatic species that are essential to the food chain, for example. “Some things are just inherently difficult to put a dollar [value] on,” says Robin Craig, an environmental law professor at the University of Utah in Salt Lake City. “What is it worth to have a healthy native ecosystem?… That’s where it can get very subjective very fast.”
That subjectivity can allow agencies to analyze policies in ways that suit their own political agendas, says Matthew Kotchen, an environmental economist at Yale University. An example: the wildly different assessments by the Obama and Trump administrations of the value gained from the 2015 Clean Water Rule, also known as the Waters of the United States rule.
The rule, passed under President Barack Obama, clarified the definition of waters protected under the 1972 Clean Water Act to include tributaries and wetlands connected to larger bodies of water. The Environmental Protection Agency estimated in 2015 that the rule would result in yearly economic benefits ranging from $300 million to $600 million, edging out the predicted annual costs of $200 million to $500 million. But in 2017, Trump’s EPA reanalyzed the rule and proposed rolling it back, saying that the agency had now calculated just $30 million to $70 million in annual benefits.
The difference in the conclusions came down to the consideration of wetlands: The 2015 analysis found that protecting wetlands, such as marshes and bogs that purify water, tallied up to $500 million in annual benefits. The Trump administration’s EPA, however, left wetlands out of the calculation entirely, says Kotchen, who analyzed the policy swing in Science in 2017.
Currently, the rule has gone into effect in 26 states, but is still tied up in legal challenges.
It’s an example of how methodology — and what counts as a benefit — can have a huge impact on the apparent value of environmental policies and laws.
The squishiness in analyzing environmental benefits underlies many of the Trump administration’s proposed rollbacks of Obama-era environmental legislation, not just ones about water pollution, Kotchen says. There are guidelines for how such cost-benefit analyses should be carried out, he says, but there’s still room for researchers or government agencies to choose what to include or exclude.
In June, the EPA, then under the leadership of Scott Pruitt, proposed revising the way the agency does cost-benefit analyses to no longer include so-called indirect benefits. For example, in evaluating policies to reduce carbon dioxide emissions, the agency would ignore the fact that those measures also reduce other harmful air pollutants. The move would, overall, make environmental policies look less beneficial.
These sharp contrasts in how presidential administrations approach environmental impact studies are not unprecedented, says Craig, the environmental law professor. “Pretty much every time we change presidents, the priorities for how to weigh those different elements change.”
Flying forward is hard enough, but flying nowhere, just hovering, is so much harder. Most bats and birds can manage the feat for only a few frantic seconds.
Hovering means losing a useful aerodynamic shortcut, says aerospace engineer and biologist David Lentink of Stanford University. As a bat or bird flies forward, its body movement sends air flowing around the wings and providing some cheap lift. For animals on the scale of bats and birds, that’s a big help. Without that boost, “you’re going to have to move all the air over your wings by moving it with your wings,” he says. The energy per second you’re consuming to stay in place by flapping your wings back and forth like a hummingbird “is gigantic.” So how do vertebrates in search of nectar, for whom a lot of energy-sucking hovering is part of life, manage the job? For the first direct measurements of the wingbeat forces that make hovering possible, Lentink’s Ph.D. student Rivers Ingersoll spent three years creating a flight chamber with exquisitely responsive sensors in the floor and ceiling. As a bird or bat hovers inside, the sensors can measure — every 200th of a second — tremors even smaller than a nanometer caused by air from fluttering wings. Once the delicate techno-marvel of an instrument was perfected, the researchers packed it into 11 shipping cases and sent it more than 6,000 kilometers to the wilds of Costa Rica. “Very difficult,” Ingersoll acknowledges. The Las Cruces Research Station is great for field biology, but it’s nothing like a Stanford engineering lab. Every car turning into the station’s driveway set off the wingbeat sensors. And even the special thick-walled room that became the machine’s second home warmed up enough every day to give the instrument a fever. Babying the instrument as best he could, Ingersoll made direct measurements for 17 hovering species of hummingbirds and three bats, including Pallas’s long-tongued bats (Glossophaga soricina). “Their up-pointy noses made me think of rhino faces,” he says. Pallas’s bats specialize in nectar sipping much as hummingbirds do. Comparing wingbeats, bat vs. bird, revealed differences, though. Hummers coupled powerful downstrokes and recovery upstrokes that twist part of the wings almost backward. The twist supplied about a quarter of the energy it takes to keep a bird aloft, the researchers report in the September 26 Science Advances. The two kinds of nectar bats got a little more lift from the upstroke than did a bat that eats fruit instead of strenuously hovering for nectar. Yet even the specialist nectar bats relied mostly on downstrokes: powerful, deeply angled downstrokes of really big wings.
Those bat wings span proportionally more area than hummer wings. So the bats get about the same hovering power per gram of body weight that hummingbirds do. Supersizing can have its own kind of high-tech design elegance.
SAN DIEGO — A sleepless night can leave the brain spinning with anxiety the next day.
In healthy adults, overnight sleep deprivation triggered anxiety the next morning, along with altered brain activity patterns, scientists reported November 4 at the annual meeting of the Society for Neuroscience.
People with anxiety disorders often have trouble sleeping. The new results uncover the reverse effect — that poor sleep can induce anxiety. The study shows that “this is a two-way interaction,” says Clifford Saper, a sleep researcher at Harvard Medical School and Beth Israel Deaconess Medical Center in Boston who wasn’t involved in the study. “The sleep loss makes the anxiety worse, which in turn makes it harder to sleep.” Sleep researchers Eti Ben Simon and Matthew Walker, both of the University of California, Berkeley, studied the anxiety levels of 18 healthy people. Following either a night of sleep or a night of staying awake, these people took anxiety tests the next morning. After sleep deprivation, anxiety levels in these healthy people were 30 percent higher than when they had slept. On average, the anxiety scores reached levels seen in people with anxiety disorders, Ben Simon said November 5 in a news briefing.
What’s more, sleep-deprived people’s brain activity changed. In response to emotional videos, brain areas involved in emotions were more active, and the prefrontal cortex, an area that can put the brakes on anxiety, was less active, functional MRI scans showed.
The results suggest that poor sleep “is more than just a symptom” of anxiety, but in some cases, may be a cause, Ben Simon said.
The cabbage tree emperor moth has wings with tiny scales that absorb sound waves sent out by bats searching for food. That absorption reduces the echoes that bounce back to bats, allowing Bunaea alcinoe to avoid being so noticeable to the nocturnal predators, researchers report online November 12 in the Proceedings of the National Academy of Sciences.
“They have this stealth coating on their body surfaces which absorbs the sound,” says study coauthor Marc Holderied, a bioacoustician at the University of Bristol in England. “We now understand the mechanism behind it.”
Bats sense their surroundings using echolocation, sending out sound waves that bounce off objects and return as echoes picked up by the bats’ supersensitive ears (SN: 9/30/17, p. 22). These moths, without ears that might alert them to an approaching predator, have instead developed scales of a size, shape and thickness suited to absorbing ultrasonic sound frequencies used by bats, the researchers found. The team shot ultrasonic sound waves at a single, microscopic scale and observed it transferring sound wave energy into movement. The scientists then simulated the process with a 3-D computer model that showed the scale absorbing up to 50 percent of the energy from sound waves.
What’s more, it isn’t just wings that help such earless moths evade bats. Other moths in the same family as B. alcinoe also have sound-absorbing fur, the same researchers report online October 18 in the Journal of the Acoustical Society of America. Holderied and his colleagues studied the fluffy thoraxes of the Madagascan bullseye moth and the promethea silk moth, and found that the fur also absorbs sound waves through a different process called porous absorption. In lab tests, the furry-bellied moths absorbed as much as 85 percent of the sound waves encountered. Researchers suspect that the equally fluffy cabbage tree emperor moth also has this ability.
Other moths that have ears can hear bats coming, and can quickly swerve out of the way of their predators, dipping and diving in dizzying directions (SN: 5/26/18, p. 11). Some moths also have long tails on their wings that researchers suspect can be twirled to disrupt bats’ sound waves (SN: 3/21/15, p. 17). Still other moths produce toxins to fend off foes.
Having sound-absorbent fur and scales “might require a lot less energy in terms of protection from the moth’s side,” says Akito Kawahara, an evolutionary biologist at the Florida Museum of Natural History in Gainesville who was not involved with the study. “It’s a very different kind of passive defense system.”
Holderied and his colleagues hope next to study how multiple scales, locked together, respond to ultrasonic sound waves. The findings could one day help in developing better soundproofing technology for sound engineers and acousticians.
Screwworms, the first pest to be eliminated on a large scale by the use of the sterile male technique, have shown an alarming increase, according to U.S. and Mexican officials…. The screwworm fly lays its eggs in open wounds on cattle. The maggots live on the flesh of their host, causing damage and death, and economic losses of many millions of dollars. — Science News, November 23, 1968
Update Though eradicated in the United States in 1966, screwworms reemerged two years later, probably coming up from Mexico. Outbreaks in southern U.S. states in 1972 and in Florida in 2016 were both handled with the sterile male technique, considered one of the most successful approaches for pest control. Males are sterilized with radiation, then released into a population to breed with wild counterparts; no offspring result. The method has been used with other pests, such as mosquitoes, which were dropped by drones over Brazil this year as a test before the technology is used against outbreaks like the Zika virus.