A lack of sleep can induce anxiety

SAN DIEGO — A sleepless night can leave the brain spinning with anxiety the next day.

In healthy adults, overnight sleep deprivation triggered anxiety the next morning, along with altered brain activity patterns, scientists reported November 4 at the annual meeting of the Society for Neuroscience.

People with anxiety disorders often have trouble sleeping. The new results uncover the reverse effect — that poor sleep can induce anxiety. The study shows that “this is a two-way interaction,” says Clifford Saper, a sleep researcher at Harvard Medical School and Beth Israel Deaconess Medical Center in Boston who wasn’t involved in the study. “The sleep loss makes the anxiety worse, which in turn makes it harder to sleep.”
Sleep researchers Eti Ben Simon and Matthew Walker, both of the University of California, Berkeley, studied the anxiety levels of 18 healthy people. Following either a night of sleep or a night of staying awake, these people took anxiety tests the next morning. After sleep deprivation, anxiety levels in these healthy people were 30 percent higher than when they had slept. On average, the anxiety scores reached levels seen in people with anxiety disorders, Ben Simon said November 5 in a news briefing.

What’s more, sleep-deprived people’s brain activity changed. In response to emotional videos, brain areas involved in emotions were more active, and the prefrontal cortex, an area that can put the brakes on anxiety, was less active, functional MRI scans showed.

The results suggest that poor sleep “is more than just a symptom” of anxiety, but in some cases, may be a cause, Ben Simon said.

Why a chemistry teacher started a science board game company

A physicist, a gamer and two editors walk into a bar. No, this isn’t the setup for some joke. After work one night, a few Science News staffers tried out a new board game, Subatomic. This deck-building game combines chemistry and particle physics for an enjoyable — and educational — time.

Subatomic is simple to grasp: Players use quark and photon cards to build protons, neutrons and electrons. With those three particles, players then construct chemical elements to score points. Scientists are the wild cards: Joseph J. Thomson, Maria Goeppert-Mayer, Marie Curie and other Nobel laureates who discovered important things related to the atom provide special abilities or help thwart other players.
The game doesn’t shy away from difficult or unfamiliar concepts. Many players might be unfamiliar with quarks, a group of elementary particles. But after a few rounds, it’s ingrained in your brain that, for example, two up quarks and one down quark create a proton. And Subatomic includes a handy booklet that explains in easy-to-understand terms the science behind the game. The physicist in our group vouched for the game’s accuracy but had one qualm: Subatomic claims that two photons, or particles of light, can create an electron. That’s theoretically possible, but scientists have yet to confirm it in the lab.

The mastermind behind Subatomic is John Coveyou, who has a master’s degree in energy, environmental and chemical engineering. As the founder and CEO of Genius Games
, he has created six other games, including Ion ( SN: 5/30/15, p. 29 ) and Linkage ( SN: 12/27/14, p. 32 ). Next year, he’ll add a periodic table game to the list . Because Science News has reviewed several of his games, we decided to talk with Coveyou about where he gets his inspiration and how he includes real science in his products. The following discussion has been edited for length and clarity.
SN: When did you get interested in science?

Coveyou: My mom was mentally and physically disabled, and my dad was in and out of prison and mental institutions. So early on, things were very different for me. I ended up leaving home when I was in high school, hopscotching around from 12 different homes throughout my junior and senior year. I almost dropped out, but I had a lot of teachers who were amazing mentors. I didn’t know what else to do, so I joined the army. While I was in Iraq, I had a bunch of science textbooks shipped to me, and I read them in my free time. They took me out of the environments I was in and became extremely therapeutic. A lot of the issues we face as a society can be worked on by the next generation having a command of the sciences. So I’m very passionate about teaching people the sciences and helping people find joy in them.

SN: Why did you start creating science games?

Coveyou: I was teaching chemistry at a community college, and I noticed that my students were really intimidated by the chemistry concepts before they even came into the classroom. They really struggled with a lot of the basic terminology. At the same time, I’ve been a board gamer pretty much my whole life. And it kind of hit me like, “Whoa, wait a second. What if I made some games that taught some of the concepts that I’m trying to teach my chemistry students?” So I just took a shot at it. The first couple of games were terrible. I didn’t really know what I was doing, but I kept at it.

SN: How do you test the games?

Coveyou: We first test with other gamers. Once we’re ready to get feedback from the general public, we go to middle school or high school students. Once we test a game with people face-to-face, we will send it across the world to about 100 to 200 different play testers, and those vary from your hard-core gamers to homeschool families to science teachers, who try it in the classroom.

SN: How do you incorporate real science into your games?

Coveyou: I pretty much always start with a science concept in mind and think about how can we create a game that best reflects the science that we want to communicate. For all of our upcoming games, we include a booklet about the science. That document is not created by Genius Games. We have about 20 to 30 Ph.D.s and doctors across the globe who write the content and edit each other. That’s been a real treat to actually show players how the game is accurate. We’ve had so many scientists and teachers who are just astonished that we created something like this that was accurate, but also fun to play.

Voyager 2 spacecraft enters interstellar space

Voyager 2 has entered interstellar space. The spacecraft slipped out of the huge bubble of particles that encircles the solar system on November 5, becoming the second ever human-made craft to cross the heliosphere, or the boundary between the sun and the stars.

Coming in second place is no mean achievement. Voyager 1 became the first spacecraft to exit the solar system in 2012. But that craft’s plasma instrument stopped working in 1980, leaving scientists without a direct view of the solar wind, hot charged particles constantly streaming from the sun (SN Online: 9/12/13). Voyager 2’s plasma sensors are still working, providing unprecedented views of the space between stars.

“We’ve been waiting with bated breath for the last couple of months for us to be able to see this,” NASA solar physicist Nicola Fox said at a Dec. 10 news conference at the American Geophysical Union meeting in Washington, D.C.

NASA launched the twin Voyager spacecraft in 1977 on a grand tour of the solar system’s planets (SN: 8/19/17, p. 26). After that initial tour was over, both spacecraft continued travelling through the bubble of plasma that originates at the sun.
“When Voyager was launched, we didn’t know how large the bubble was, how long it would take to get [to its edge] and whether the spacecraft could last long enough to get there,” said Voyager project scientist Edward Stone of Caltech.

For most of Voyager 2’s journey, the spacecraft’s Plasma Science Experiment measured the speed, density, temperature, pressure and other properties of the solar wind. But on November 5, the experiment saw a sharp drop in the speed and the number of solar wind particles that hit the detector each second. At the same time, another detector started picking up more high-energy particles called cosmic rays that originate elsewhere in the galaxy.
Those measurements suggest that Voyager 2 has reached the region where the solar wind slams into the colder, denser population of particles that fill the space between stars. Voyager 2 is now a little more than 18 billion kilometers from the sun.

Intriguingly, Voyager 2’s measurements of cosmic rays and magnetic fields — which Voyager 1 could still make when it crossed the boundary — did not exactly match up with Voyager 1’s observations.
“That’s what makes it interesting,” Stone said. The variations are probably from the fact that the two spacecraft exited the heliosphere in different places, and that the sun is at a different part of its 11-year activity cycle than it was in 2012. “We would have been amazed if they had looked the same.”

The Voyagers probably have between five and 10 years left to continue exploring interstellar space, said Voyager project manager Suzanne Dodd from NASA’s Jet Propulsion Laboratory in Pasadena, Calif.

“Both spacecraft are very healthy if you consider them senior citizens,” Dodd said. The biggest concern is how much power they have left and how cold they are — Voyager 2 is currently about 3.6° Celsius, close to the freezing point of its hydrazine fuel. In the near future, the team will have to turn off some of the spacecraft’s instruments to keep the craft operating and sending data back to Earth.

“We do have difficult decisions ahead,” Dodd said. She added that her personal goal is to see the spacecraft last until 2027, for a total of 50 years in space. “That would be fantastic.”

A new implant uses light to control overactive bladders

A new soft, wireless implant may someday help people who suffer from overactive bladder get through the day with fewer bathroom breaks.

The implant harnesses a technique for controlling cells with light, known as optogenetics, to regulate nerve cells in the bladder. In experiments in rats with medication-induced overactive bladders, the device alleviated animals’ frequent need to pee, researchers report online January 2 in Nature.

Although optogenetics has traditionally been used for manipulating brain cells to study how the mind works, the new implant is part of a recent push to use the technique to tame nerve cells throughout the body (SN: 1/30/10, p. 18). Similar optogenetic implants could help treat disease and dysfunction in other organs, too.
“I was very happy to see this,” says Bozhi Tian, a materials scientist at the University of Chicago not involved in the work. An estimated 33 million people in the United States have overactive bladders. One available treatment is an implant that uses electric currents to regulate bladder nerve cells. But those implants “will stimulate a lot of nerves, not just the nerves that control the bladder,” Tian says. That can interfere with the function of neighboring organs, and continuous electrical stimulation can be uncomfortable.

The new optogenetic approach, however, targets specific nerves in only one organ and only when necessary. To control nerve cells with light, researchers injected a harmless virus carrying genetic instructions for bladder nerve cells to produce a light-activated protein called archaerhodopsin 3.0, or Arch. A stretchy sensor wrapped around the bladder tracks the wearer’s urination habits, and the implant wirelessly sends that information to a program on a tablet computer.
If the program detects the user heeding nature’s call at least three times per hour, it tells the implant to turn on a pair of tiny LEDs. The green glow of these micro light-emitting diodes activates the light-sensitive Arch proteins in the bladder’s nerve cells, preventing the cells from sending so many full-bladder alerts to the brain.
John Rogers, a materials scientist and bioengineer at Northwestern University in Evanston, Ill., and colleagues tested their implants by injecting rats with the overactive bladder–causing drug cyclophosphamide. Over the next several hours, the implants successfully detected when rats were passing water too frequently, and lit up green to bring the animals’ urination patterns back to normal.

Shriya Srinivasan, a medical engineer at MIT not involved in the work, is impressed with the short-term effectiveness of the implant. But, she says, longer-term studies may reveal complications with the treatment.

For instance, a patient might develop an immune reaction to the foreign Arch protein, which would cripple the protein’s ability to block signals from bladder nerves to the brain. But if proven safe and effective in the long term, similar optogenetic implants that sense and respond to organ motion may also help treat heart, lung or muscle tissue problems, she says.

Optogenetic implants could also monitor other bodily goings-on, says study coauthor Robert Gereau, a neuroscientist at Washington University in St. Louis. Hormone levels and tissue oxygenation or hydration, for example, could be tracked and used to trigger nerve-altering LEDs for medical treatment, he says.

4 things we’ll learn from the first closeup image of a black hole

Editor’s note: On April 10, the Event Horizon Telescope collaboration released a picture of the supermassive black hole at the center of galaxy M87. Read the full story here.

We’re about to see the first close-up of a black hole.

The Event Horizon Telescope, a network of eight radio observatories spanning the globe, has set its sights on a pair of behemoths: Sagittarius A*, the supermassive black hole at the Milky Way’s center, and an even more massive black hole 53.5 million light-years away in galaxy M87 (SN Online: 4/5/17).
In April 2017, the observatories teamed up to observe the black holes’ event horizons, the boundary beyond which gravity is so extreme that even light can’t escape (SN: 5/31/14, p. 16). After almost two years of rendering the data, scientists are gearing up to release the first images in April.

Here’s what scientists hope those images can tell us.

What does a black hole really look like?
Black holes live up to their names: The great gravitational beasts emit no light in any part of the electromagnetic spectrum, so they themselves don’t look like much.

But astronomers know the objects are there because of a black hole’s entourage. As a black hole’s gravity pulls in gas and dust, matter settles into an orbiting disk, with atoms jostling one another at extreme speeds. All that activity heats the matter white-hot, so it emits X-rays and other high-energy radiation. The most voraciously feeding black holes in the universe have disks that outshine all the stars in their galaxies (SN Online: 3/16/18).
The EHT’s image of the Milky Way’s Sagittarius A, also called SgrA, is expected to capture the black hole’s shadow on its accompanying disk of bright material. Computer simulations and the laws of gravitational physics give astronomers a pretty good idea of what to expect. Because of the intense gravity near a black hole, the disk’s light will be warped around the event horizon in a ring, so even the material behind the black hole will be visible.
And the image will probably look asymmetrical: Gravity will bend light from the inner part of the disk toward Earth more strongly than the outer part, making one side appear brighter in a lopsided ring.

Does general relativity hold up close to a black hole?
The exact shape of the ring may help break one of the most frustrating stalemates in theoretical physics.

The twin pillars of physics are Einstein’s theory of general relativity, which governs massive and gravitationally rich things like black holes, and quantum mechanics, which governs the weird world of subatomic particles. Each works precisely in its own domain. But they can’t work together.

“General relativity as it is and quantum mechanics as it is are incompatible with each other,” says physicist Lia Medeiros of the University of Arizona in Tucson. “Rock, hard place. Something has to give.” If general relativity buckles at a black hole’s boundary, it may point the way forward for theorists.

Since black holes are the most extreme gravitational environments in the universe, they’re the best environment to crash test theories of gravity. It’s like throwing theories at a wall and seeing whether — or how — they break. If general relativity does hold up, scientists expect that the black hole will have a particular shadow and thus ring shape; if Einstein’s theory of gravity breaks down, a different shadow.

Medeiros and her colleagues ran computer simulations of 12,000 different black hole shadows that could differ from Einstein’s predictions. “If it’s anything different, [alternative theories of gravity] just got a Christmas present,” says Medeiros, who presented the simulation results in January in Seattle at the American Astronomical Society meeting. Even slight deviations from general relativity could create different enough shadows for EHT to probe, allowing astronomers to quantify how different what they see is from what they expect.
Do stellar corpses called pulsars surround the Milky Way’s black hole?
Another way to test general relativity around black holes is to watch how stars careen around them. As light flees the extreme gravity in a black hole’s vicinity, its waves get stretched out, making the light appear redder. This process, called gravitational redshift, is predicted by general relativity and was observed near SgrA* last year (SN: 8/18/18, p. 12). So far, so good for Einstein.

An even better way to do the same test would be with a pulsar, a rapidly spinning stellar corpse that sweeps the sky with a beam of radiation in a regular cadence that makes it appear to pulse (SN: 3/17/18, p. 4). Gravitational redshift would mess up the pulsars’ metronomic pacing, potentially giving a far more precise test of general relativity.

“The dream for most people who are trying to do SgrA* science, in general, is to try to find a pulsar or pulsars orbiting” the black hole, says astronomer Scott Ransom of the National Radio Astronomy Observatory in Charlottesville, Va. “There are a lot of quite interesting and quite deep tests of [general relativity] that pulsars can provide, that EHT [alone] won’t.”

Despite careful searches, no pulsars have been found near enough to SgrA* yet, partly because gas and dust in the galactic center scatters their beams and makes them difficult to spot. But EHT is taking the best look yet at that center in radio wavelengths, so Ransom and colleagues hope it might be able to spot some.

“It’s a fishing expedition, and the chances of catching a whopper are really small,” Ransom says. “But if we do, it’s totally worth it.”
How do some black holes make jets?
Some black holes are ravenous gluttons, pulling in massive amounts of gas and dust, while others are picky eaters. No one knows why. SgrA* seems to be one of the fussy ones, with a surprisingly dim accretion disk despite its 4 million solar mass heft. EHT’s other target, the black hole in galaxy M87, is a voracious eater, weighing in at between about 3.5 billion and 7.22 billion solar masses. And it doesn’t just amass a bright accretion disk. It also launches a bright, fast jet of charged subatomic particles that stretches for about 5,000 light-years.

“It’s a little bit counterintuitive to think a black hole spills out something,” says astrophysicist Thomas Krichbaum of the Max Planck Institute for Radio Astronomy in Bonn, Germany. “Usually people think it only swallows something.”

Many other black holes produce jets that are longer and wider than entire galaxies and can extend billions of light-years from the black hole. “The natural question arises: What is so powerful to launch these jets to such large distances?” Krichbaum says. “Now with the EHT, we can for the first time trace what is happening.”

EHT’s measurements of M87’s black hole will help estimate the strength of its magnetic field, which astronomers think is related to the jet-launching mechanism. And measurements of the jet’s properties when it’s close to the black hole will help determine where the jet originates — in the innermost part of the accretion disk, farther out in the disk or from the black hole itself. Those observations might also reveal whether the jet is launched by something about the black hole itself or by the fast-flowing material in the accretion disk.

Since jets can carry material out of the galactic center and into the regions between galaxies, they can influence how galaxies grow and evolve, and even where stars and planets form (SN: 7/21/18, p. 16).

“It is important to understanding the evolution of galaxies, from the early formation of black holes to the formation of stars and later to the formation of life,” Krichbaum says. “This is a big, big story. We are just contributing with our studies of black hole jets a little bit to the bigger puzzle.”

Editor’s note: This story was updated April 1, 2019, to correct the mass of M87’s black hole; the entire galaxy’s mass is 2.4 trillion solar masses, but the black hole itself weighs in at several billion solar masses. In addition, the black hole simulation is an example of one that uphold’s Einstein’s theory of general relativity, not one that deviates from it.

In mice, anxiety isn’t all in the head. It can start in the heart

When you’re stressed and anxious, you might feel your heart race. Is your heart racing because you’re afraid? Or does your speeding heart itself contribute to your anxiety? Both could be true, a new study in mice suggests.

By artificially increasing the heart rates of mice, scientists were able to increase anxiety-like behaviors — ones that the team then calmed by turning off a particular part of the brain. The study, published in the March 9 Nature, shows that in high-risk contexts, a racing heart could go to your head and increase anxiety. The findings could offer a new angle for studying and, potentially, treating anxiety disorders.
The idea that body sensations might contribute to emotions in the brain goes back at least to one of the founders of psychology, William James, says Karl Deisseroth, a neuroscientist at Stanford University. In James’ 1890 book The Principles of Psychology, he put forward the idea that emotion follows what the body experiences. “We feel sorry because we cry, angry because we strike, afraid because we tremble,” James wrote.

The brain certainly can sense internal body signals, a phenomenon called interoception. But whether those sensations — like a racing heart — can contribute to emotion is difficult to prove, says Anna Beyeler, a neuroscientist at the French National Institute of Health and Medical Research in Bordeaux. She studies brain circuitry related to emotion and wrote a commentary on the new study but was not involved in the research. “I’m sure a lot of people have thought of doing these experiments, but no one really had the tools,” she says.

Deisseroth has spent his career developing those tools. He is one of the scientists who developed optogenetics — a technique that uses viruses to modify the genes of specific cells to respond to bursts of light (SN: 6/18/21; SN: 1/15/10). Scientists can use the flip of a light switch to activate or suppress the activity of those cells.
In the new study, Deisseroth and his colleagues used a light attached to a tiny vest over a mouse’s genetically engineered heart to change the animal’s heart rate. When the light was off, a mouse’s heart pumped at about 600 beats per minute. But when the team turned on a light that flashed at 900 beats per minutes, the mouse’s heartbeat followed suit. “It’s a nice reasonable acceleration, [one a mouse] would encounter in a time of stress or fear,” Deisseroth explains.

When the mice felt their hearts racing, they showed anxiety-like behavior. In risky scenarios — like open areas where a little mouse might be someone’s lunch — the rodents slunk along the walls and lurked in darker corners. When pressing a lever for water that could sometimes be coupled with a mild shock, mice with normal heart rates still pressed without hesitation. But mice with racing hearts decided they’d rather go thirsty.

“Everybody was expecting that, but it’s the first time that it has been clearly demonstrated,” Beyeler says.
The researchers also scanned the animals’ brains to find areas that might be processing the increased heart rate. One of the biggest signals, Deisseroth says, came from the posterior insula (SN: 4/25/16). “The insula was interesting because it’s highly connected with interoceptive circuitry,” he explains. “When we saw that signal, [our] interest was definitely piqued.”

Using more optogenetics, the team reduced activity in the posterior insula, which decreased the mice’s anxiety-like behaviors. The animals’ hearts still raced, but they behaved more normally, spending some time in open areas of mazes and pressing levers for water without fear.
A lot of people are very excited about the work, says Wen Chen, the branch chief of basic medicine research for complementary and integrative health at the National Center for Complementary and Integrative Health in Bethesda, Md. “No matter what kind of meetings I go into, in the last two days, everybody brought up this paper,” says Chen, who wasn’t involved in the research.

The next step, Deisseroth says, is to look at other parts of the body that might affect anxiety. “We can feel it in our gut sometimes, or we can feel it in our neck or shoulders,” he says. Using optogenetics to tense a mouse’s muscles, or give them tummy butterflies, might reveal other pathways that produce fearful or anxiety-like behaviors.

Understanding the link between heart and head could eventually factor into how doctors treat panic and anxiety, Beyeler says. But the path between the lab and the clinic, she notes, is much more convoluted than that of the heart to the head.

An antibody injection could one day help people with endometriosis

An experimental treatment for endometriosis, a painful gynecological disease that affects some 190 million people worldwide, may one day offer new hope for easing symptoms.

Monthly antibody injections reversed telltale signs of endometriosis in monkeys, researchers report February 22 in Science Translational Medicine. The antibody targets IL-8, a molecule that whips up inflammation inside the scattered, sometimes bleeding lesions that mark the disease. After neutralizing IL-8, those hallmark lesions shrink, the team found.

The new treatment is “pretty potent,” says Philippa Saunders, a reproductive scientist at the University of Edinburgh who was not involved with work. The study’s authors haven’t reported a cure, she points out, but their antibody does seem to have an impact. “I think it’s really very promising,” she says.

Many scientists think endometriosis occurs when bits of the uterine lining — the endometrium — slough off during menstruation. Instead of exiting via the vagina, they voyage in the other direction: up through the fallopian tubes. Those bits of tissue then trespass through the body, sprouting lesions where they land. They’ll glom onto the ovaries, fallopian tubes, bladder and other spots outside of the uterus and take on a life of their own, Saunders says.
The lesions can grow nerve cells, form tough nubs of tissue and even bleed during menstrual cycles. They can also kick off chronic bouts of pelvic pain. If you have endometriosis, you can experience “pain when you urinate, pain when you defecate, pain when you have sex, pain when you move around,” Saunders says. People with the disease can also struggle with infertility and depression, she adds. “It’s really nasty.”
Once diagnosed, patients face a dearth of treatment options — there’s no cure, only therapies to alleviate symptoms. Surgery to remove lesions can help, but symptoms often come back.

The disease affects at least 10 percent of girls, women and transgender men in their reproductive years, Saunders says. And people typically suffer for years — about eight on average — before a diagnosis. “Doctors consider menstrual pelvic pain a very common thing,” says Ayako Nishimoto-Kakiuchi, a pharmacologist at Chugai Pharmaceutical Co. Ltd. in Tokyo. Endometriosis “is underestimated in the clinic,” she says. “I strongly believe that this disease has been understudied.”

Hormonal drugs that stop ovulation and menstruation can also offer relief, says Serdar Bulun, a reproductive endocrinologist at Northwestern University Feinberg School of Medicine in Chicago not involved with the new study. But those drugs come with side effects and aren’t ideal for people trying to become pregnant. “I see these patients day in and day out,” he says. “I see how much they suffer, and I feel like we are not doing enough.”

Nishimoto-Kakiuchi’s team engineered an antibody that grabs onto the inflammatory factor IL-8, a protein that scientists have previously fingered as one potential culprit in the disease. The antibody acts like a garbage collector, Nishimoto-Kakiuchi says. It grabs IL-8, delivers it to the cell’s waste disposal machinery, and then heads out to snare more IL-8.

The team tested the antibody in cynomolgus monkeys that were surgically modified to have the disease. (Endometriosis rarely shows up spontaneously in these monkeys, the scientists discovered previously after screening more than 600 females.) The team treated 11 monkeys with the antibody injection once a month for six months. In these animals, lesions shriveled and the adhesive tissue that glues them to the body thinned out, too. Before this study, Nishimoto-Kakiuchi says, the team didn’t think such signs of endometriosis were reversible.
Her company has now started a Phase I clinical trial to test the safety of therapy in humans. The treatment is one of several endometriosis therapies scientists are testing (SN: 7/19/19) . Other trials will test new hormonal drugs, robot-assisted surgery and behavioral interventions.

Doctors need new options to help people with the disease, Saunders says. “There’s a huge unmet clinical need.”

Half of all active satellites are now from SpaceX. Here’s why that may be a problem

SpaceX’s rapidly growing fleet of Starlink internet satellites now make up half of all active satellites in Earth orbit.

On February 27, the aerospace company launched 21 new satellites to join its broadband internet Starlink fleet. That brought the total number of active Starlink satellites to 3,660, or about 50 percent of the nearly 7,300 active satellites in orbit, according to analysis by astronomer Jonathan McDowell using data from SpaceX and the U.S. Space Force.
“These big low-orbit internet constellations have come from nowhere in 2019, to dominating the space environment in 2023,” says McDowell, of the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass. “It really is a massive shift and a massive industrialization of low orbit.”

SpaceX has been launching Starlink satellites since 2019 with the goal of bringing broadband internet to remote parts of the globe. And for just as long, astronomers have been warning that the bright satellites could mess up their view of the cosmos by leaving streaks on telescope images as they glide past (SN: 3/12/20).

Even the Hubble Space Telescope, which orbits more than 500 kilometers above the Earth’s surface, is vulnerable to these satellite streaks, as well as those from other satellite constellations. From 2002 to 2021, the percentage of Hubble images affected by light from low-orbit satellites increased by about 50 percent, astronomer Sandor Kruk of the Max-Planck Institute for Extraterrestrial Physics in Garching, Germany, and colleagues report March 2 in Nature Astronomy.

The number of images partially blocked by satellites is still small, the team found, rising from nearly 3 percent of images taken between 2002 and 2005 to just over 4 percent between 2018 and 2021 for one of Hubble’s cameras. But there are already thousands more Starlink satellites now than there were in 2021.

“The fraction of [Hubble] images crossed by satellites is currently small with a negligible impact on science,” Kruk and colleagues write. “However, the number of satellites and space debris will only increase in the future.” The team predicts that by the 2030s, the probability of a satellite crossing Hubble’s field of view any time it takes an image will be between 20 and 50 percent.
The sudden jump in Starlink satellites also poses a problem for space traffic, says astronomer Samantha Lawler of the University of Regina in Canada. Starlink satellites all orbit at a similar distance from Earth, just above 500 kilometers.

“Starlink is the densest patch of space that has ever existed,” Lawler says. The satellites are constantly navigating out of each other’s way to avoid collisions (SN: 2/12/09). And it’s a popular orbital altitude — Hubble is there, and so is the International Space Station and the Chinese space station.
“If there is some kind of collision [between Starlinks], some kind of mishap, it could immediately affect human lives,” Lawler says.

SpaceX launches Starlink satellites roughly once per week — it launched 51 more on March 3. And they’re not the only company launching constellations of internet satellites. By the 2030s, there could be 100,000 satellites crowding low Earth orbit.

So far, there are no international regulations to curb the number of satellites a private company can launch or to limit which orbits they can occupy.

“The speed of commercial development is much faster than the speed of regulation change,” McDowell says. “There needs to be an overhaul of space traffic management and space regulation generally to cope with these massive commercial projects.”

The oldest known pollen-carrying insects lived about 280 million years ago

The oldest known fossils of pollen-laden insects are of earwig-like ground-dwellers that lived in what is now Russia about 280 million years ago, researchers report. Their finding pushes back the fossil record of insects transporting pollen from one plant to another, a key aspect of modern-day pollination, by about 120 million years.

The insects — from a pollen-eating genus named Tillyardembia first described in 1937 — were typically about 1.5 centimeters long, says Alexander Khramov, a paleoentomologist at the Borissiak Paleontological Institute in Moscow. Flimsy wings probably kept the creatures mostly on the forest floor, he says, leaving them to climb trees to find and consume their pollen.

Recently, Khramov and his colleagues scrutinized 425 fossils of Tillyardembia in the institute’s collection. Six had clumps of pollen grains trapped on their heads, legs, thoraxes or abdomens, the team reports February 28 in Biology Letters. A proportion that small isn’t surprising, Khramov says, because the fossils were preserved in what started out as fine-grained sediments. The early stages of fossilization in such material would tend to wash away pollen from the insects’ remains.
The pollen-laden insects had only a couple of types of pollen trapped on them, the team found, suggesting that the critters were very selective in the tree species they visited. “That sort of specialization is in line with potential pollinators,” says Michael Engel, a paleoentomologist at the University of Kansas in Lawrence who was not involved in the study. “There’s probably vast amounts of such specialization that occurred even before Tillyardembia, we just don’t have evidence of it yet.”

Further study of these fossils might reveal if Tillyardembia had evolved special pollen-trapping hairs or other such structures on their bodies or heads, says Conrad Labandeira, a paleoecologist at the National Museum of Natural History in Washington, D.C., also not part of the study. It would also be interesting, he says, to see if something about the pollen helped it stick to the insects. If the pollen grains had structures that enabled them to clump more readily, for example, then those same features may have helped them grab Velcro-like onto any hairlike structures on the insects’ bodies.

Chemical signals from fungi tell bark beetles which trees to infest

Fungi may help some tree-killer beetles turn a tree’s natural defense system against itself.

The Eurasian spruce bark beetle (Ips typographus) has massacred millions of conifers in forests across Europe. Now, research suggests that fungi associated with these bark beetles are key players in the insect’s hostile takeovers. These fungi warp the chemical defenses of host trees to create an aroma that attracts beetles to burrow, researchers report February 21 in PLOS Biology.

This fungi-made perfume might explain why bark beetles tend to swarm the same tree. As climate change makes Europe’s forests more vulnerable to insect invasions, understanding this relationship could help scientists develop new countermeasures to ward off beetle attacks.
Bark beetles are a type of insect found around the world that feed and breed inside trees (SN: 12/17/10). In recent years, several bark beetle species have aggressively attacked forests from North America to Australia, leaving ominous strands of dead trees in their wake.

But trees aren’t defenseless. Conifers — which include pine and fir trees — are veritable chemical weapons factories. The evergreen smell of Christmas trees and alpine forests comes from airborne varieties of these chemicals. But while they may smell delightful, these chemicals’ main purpose is to trap and poison invaders.

Or at least, that’s what they’re meant to do.

“Conifers are full of resin and other stuff that should do horrible things to insects,” says Jonathan Gershenzon, a chemical ecologist at the Max Planck Institute for Chemical Ecology in Jena, Germany. “But bark beetles don’t seem to mind at all.”

This ability of bark beetles to overcome the powerful defense system of conifers has led some scientists to wonder if fungi might be helping. Fungi break down compounds in their environment for food and protection (SN: 11/30/21). And some type of fungi — including some species in the genus Grosmannia — are always found in association with Eurasian spruce bark beetles.
Gershenzon and his colleagues compared the chemicals released by spruce bark infested with Grosmannia and other fungi to the chemical profile of uninfected trees. The presence of the fungi fundamentally changed the chemical profile of spruce trees, the team found. More than half the airborne chemicals — made by fungi breaking down monoterpenes and other chemicals that are likely part of the tree defense system — were unique to infected trees after 12 days.

This is surprising because researchers had previously assumed that invading fungi hardly changed the chemical profile of trees, says Jonathan Cale, a fungal ecologist at the University of Northern British Columbia in Prince George, Canada, who was not involved with the research.
Later experiments revealed that bark beetles can detect many of these fungi-made chemicals. The team tested this by attaching tiny electrodes on bark beetles’ heads and detecting electrical activity when the chemicals wafted passed their antennae. What’s more, the smell of these chemicals combined with beetle pheromones led the insects to burrow at higher rates than the smell of pheromones alone.

The study suggests that these fungi-made chemicals can help beetles tell where to feed and breed, possibly by advertising that the fungi has taken down some of the tree’s defenses. The attractive nature of the chemicals could also explain the beetle’s swarming behavior, which drives the death of healthy adult trees.

But while the fungi aroma might doom trees, it could also lead to the beetles’ demise. Beetle traps in Europe currently use only beetle pheromones to attract their victims. Combining pheromones with fungi-derived chemicals might be the secret to entice more beetles into traps, making them more effective.

The results present “an exciting direction for developing new tools to manage destructive bark beetle outbreaks” for other beetle species as well, Cale says. In North America, mild winters and drought have put conifer forests at greater risk from mountain pine beetle (Dendroctonus pendersoae) attacks. Finding and using fungi-derived chemicals might be one way to fend off the worst of the bark beetle invasions in years to come.