If the Milky Way exists in the biggest cosmic void ever observed, that could solve a puzzling mismatch between ways to measure how fast the universe is expanding.
Observations of 120,000 galaxies bolstering the Milky Way’s loner status were presented by Benjamin Hoscheit June 7 at a meeting of the American Astronomical Society in Austin, Texas. Building on earlier work by his adviser, University of Wisconsin‒Madison astronomer Amy Barger, Hoscheit and Barger measured how the density of galaxies changed with distance from the Milky Way. In agreement with the earlier study, the pair found that the Milky Way has far fewer neighbors than it should. There was a rise in density about 1 billion light-years out, suggesting the Milky Way resides in an abyss about 2 billion light-years wide.
Simulations of how cosmic structures form suggest that most galaxies clump along dense filaments of dark matter, which are separated by vast cosmic voids.
If the Milky Way lives in such a void, it could help explain why the universe seems to be expanding at different rates depending on how it’s measured (SN: 8/6/16, p. 10). Measurements based on the cosmic microwave background, the earliest light in the universe, suggest one rate of expansion, while measurements of nearby supernovas suggest a faster one.
Those supernovas could be feeling an extra gravitational pull from all the matter at the edges of the void, Hoscheit says. The actual expansion rate is probably the slower one measured in the universe’s early light.
“If you don’t account for the void effects, you could mistake this relationship to indicate that there is too much expansion,” Hoscheit says.
Those who struggle to fit a vacation wardrobe into a carry-on might learn from ladybugs. The flying beetles neatly fold up their wings when they land, stashing the delicate appendages underneath their protective red and black forewings.
To learn how one species of ladybug (Coccinella septempunctata) achieves such efficient packing, scientists needed to see under the bug’s spotted exterior. So a team from Japan replaced part of a ladybug’s forewing with a transparent bit of resin, to get a first-of-its-kind glimpse of the folding. Slow-motion video of the altered ladybug showed that the insect makes a complex, origami-like series of folds to stash its wings, the scientists report in the May 30 Proceedings of the National Academy of Sciences. CT scans helped explain how the wings can be both strong enough to hold the insects aloft and easily foldable into a tiny package. The shape of the wing veins allows them to flex like a metal tape measure, making the wings stiff but bendable. Lessons learned from the wings could be applied to new technologies, including foldable aircraft wings or solar panels that unfurl from a spacecraft.
The hunt for gravitational waves is moving upward. A space-based detector called the Laser Interferometer Space Antenna, or LISA, was selected as a mission in the European Space Agency’s science program, the agency announced June 20.
LISA will consist of three identical satellites arranged in a triangle that will cartwheel through space in orbit around the sun just behind Earth. The spacecraft will use lasers to detect changes in the distance between each satellite. Those changes would indicate the passage of gravitational waves, the ripples in spacetime that massive bodies such as black holes shake off when they move.
The spacecraft was originally planned as a joint mission between ESA and NASA, but NASA pulled out in 2011 citing budget issues. In December 2015, ESA launched a single satellite called LISA Pathfinder to test the concept — a test it passed with flying colors.
Interest in LISA increased in 2016 after researchers at the ground-based LIGO detectors announced that they had finally observed gravitational waves. LIGO is best suited for detecting the crash caused when dense objects such as neutron stars or solar-mass black holes collide.
LISA, on the other hand, will be sensitive to the collision of much more massive objects — such as the supermassive black holes that make up most galaxies’ cores.
The mission design and cost are still being completed. If all goes as planned, LISA will launch in 2034.
Climate change may make the rich richer and the poor poorer in the United States.
Counties in the South face a higher risk of economic downturn due to climate change than their northern counterparts, a new computer simulation predicts. Because southern counties generally host poorer populations, the new findings, reported in the June 30 Science, suggest that climate change will worsen existing wealth disparities.
“It’s the most detailed and comprehensive study of the effects of climate change in the United States,” says Don Fullerton, an economist at the University of Illinois at Urbana-Champaign who was not involved in the work. “Nobody has ever even considered the effects of climate change on inequality.” Researchers created a computer program called SEAGLAS that combined several climate simulations to forecast U.S. climate until 2100, assuming greenhouse gas emissions keep ramping up. Then, using data from previous studies on how temperature and rainfall affect several economic factors — including crop yields, crime rates and energy expenditures — SEAGLAS predicted how the economy of each of the 3,143 counties in the United States would fare.
By the end of the century, some counties may see their gross domestic product decline by more than 20 percent, while others may actually experience more than a 10 percent increase in GDP. This could make for the biggest transfer of wealth in U.S. history, says study coauthor Solomon Hsiang, an economist at the University of California, Berkeley.
In general, SEAGLAS predicts that counties in the lower Midwest, the South and the Southwest — already home to some of the country’s poorest communities — will bear the brunt of climate-caused economic damages, while counties in New England, the Great Lakes region and the Pacific Northwest will suffer less or see gains. For many of the examined economic factors, such as the number of deaths per year, “getting a little bit hotter is much worse if you’re already very hot,” explains Hsiang. “Most of the south is the hottest part of the country, so those are the regions where costs tend to be really high.” The economic gaps may get stretched even wider than SEAGLAS predicts, Fullerton says, because the simulation doesn’t account for wealth disparities within counties. For example, wealthier people in poor counties may have access to air conditioning while their less fortunate neighbors do not. So blisteringly hot weather is most likely to harm the poorest of the poor.
Not all researchers, however, think the future is as bleak as SEAGLAS suggests. The simulation doesn’t fully account for adaptation to climate change, says Delavane Diaz, an energy and environmental policy analyst at the Electric Power Research Institute in Washington, D.C., a nonprofit research organization. For example, people in coastal regions could mitigate the cost of sea level rise by flood-proofing structures or moving inland, she says.
And the economic factors examined in this study don’t account for some societal benefits that may arise from climate change, says Derek Lemoine, an economist at the University of Arizona in Tucson. For instance, although crime rates rise when it’s warmer because more people tend to be out and about, people being active outside could have a positive impact on health.
But SEAGLAS is designed to incorporate different societal variables as new data become available. “I really like the system,” Lemoine says. “It’s a super ambitious work and the kind of thing that needs to be done.”
How well, not how much, people sleep may affect Alzheimer’s disease risk.
Healthy adults built up Alzheimer’s-associated proteins in their cerebral spinal fluid when prevented from getting slow-wave sleep, the deepest stage of sleep, researchers report July 10 in Brain. Just one night of deep-sleep disruption was enough to increase the amount of amyloid-beta, a protein that clumps into brain cell‒killing plaques in people with Alzheimer’s. People in the study who slept poorly for a week also had more of a protein called tau in their spinal fluid than they did when well rested. Tau snarls itself into tangles inside brain cells of people with the disease. These findings support a growing body of evidence that lack of Zs is linked to Alzheimer’s and other neurodegenerative diseases. Specifically, “this suggests that there’s something special about deep, slow-wave sleep,” says Kristine Yaffe, a neurologist and psychiatrist at the University of California, San Francisco who was not involved in the study.
People with Alzheimer’s are notoriously poor sleepers, but scientists aren’t sure if that is a cause or a consequence of the disease. Evidence from recent animal and human studies suggests the problem goes both ways, Yaffe says. Lack of sleep may make people more prone to brain disorders. And once a person has the disease, disruptions in the brain may make it hard to sleep. Still, it wasn’t clear why not getting enough shut-eye promotes Alzheimer’s disease. Researchers led by neurologist David Holtzman of Washington University School of Medicine in St. Louis speculated that lower levels of brain cell activity during deep sleep would produce less A-beta, tau and other proteins than other stages of sleep or wakefulness. Holtzman, Washington University sleep medicine physician Yo-El Ju and colleagues recruited 17 volunteers, all healthy adults between ages 35 and 65, who had no sleep disorders. “These are good sleepers,” Ju says. Volunteers wore activity monitors to track their sleep at home and visited the sleep lab at least twice. On one visit, the volunteers slept normally while wearing headphones. On the other visit, researchers played beeps through headphones whenever the volunteers were about to go into deep sleep. The sounds usually didn’t wake the people up but kept them from getting any slow-wave sleep. Volunteers slept just as much on the night when deep sleep was disrupted as they did on the night when no sound was played through the headphones. Spinal taps showed that the more deep sleep people missed out on, the higher their levels of A-beta in the morning. Tau levels didn’t budge because of just one night of slow-wave sleep disruption, but people whose activity monitors indicated they had slept poorly the week before the test also had higher levels of that protein.
“This study in humans is really an elegant experimental demonstration” that bolsters Holtzman’s hypothesis that lack of rest for brain cells could be detrimental, says Adam Spira, a psychologist at Johns Hopkins Bloomberg School of Public Health. Without proper deep sleep, brain cells continue to churn out, producing more A-beta and tau than a well-rested brain.
Some research has suggested that toxic proteins get flushed out of the brain during sleep (SN: 11/16/13, p. 7). Messing with slow-wave sleep doesn’t seem to interfere with this wash cycle, Ju says. Levels of other proteins made by nerve cells didn’t vary with the lack of deep sleep, she says.
The tempo of a male elephant seal’s call broadcasts his identity to rival males, a new study finds.
Every male elephant seal has a distinct vocalization that sounds something like a sputtering lawnmower — pulses of sound in a pattern and at a pace that stays the same over time.
At a California state park where elephant seals breed each year, researchers played different variations of an alpha male’s threat call to subordinate males who knew him. The seals weren’t as responsive when the tempo of that call was modified substantially, suggesting they didn’t recognize it as a threat. Modifying the call’s timbre — the acoustic quality of the sound — had the same effect, researchers report August 7 in Current Biology. Unlike dolphins and songbirds, elephant seals don’t seem to vary pitch to communicate. Those vocal name tags serve a purpose. During breeding season, male elephant seals spend three months on land without food or water, competing with rivals for social status and mating rights. Fights between two blubbery car-sized animals can be brutal.
“We’ve seen males lose their noses,” says Caroline Casey, a biologist at the University of California, Santa Cruz. For lower-ranking males, identifying an alpha male by his call and then backing off might prevent a beach brawl.
Mums are now a flower of a different color. Japanese researchers have added a hint of clear sky to the humble plant’s palette, genetically engineering the first-ever “true blue” chrysanthemum.
“Obtaining blue-colored flowers is the Holy Grail for plant breeders,” says Mark Bridgen, a plant breeder at Cornell University. The results are “very exciting.”
Compounds called delphinidin-based anthocyanin pigments are responsible for the natural blues in such flowers as pansies and larkspur. Mums lack those compounds. Instead, the flowers come in a variety of other colors, evoking fiery sunsets, new-fallen snow and all things chartreuse. In previous attempts to engineer a blue hue in chrysanthemums — and roses and carnations — researchers inserted the gene for a key enzyme that controls production of these compounds, causing them to accumulate. But the resulting blooms skewed more violet-purple than blue. True blue pigment remained elusive, scientists thought, because its origin was complex; multiple genes have been shown to be involved in its generation. But Naonobu Noda, of the National Agriculture and Food Research Organization in Tsukuba, Japan, and colleagues were surprised to find that inserting only two borrowed genes into chrysanthemums created blue flowers. One gene, from Canterbury bells, got the enzyme process started; the other, from butterfly peas, further tweaked the pigment molecules.
Together, the gene double-team transformed 19 of 32 mums, or 59 percent, of the Taihei variety from having pink or magenta blooms into blue beauties. Additional analyses revealed that the blue color arose because of molecular interactions between the tweaked pigment and certain colorless compounds naturally found in many plants, including chrysanthemums. The two-part method could possibly be used in the production of other blue flowers, the researchers report July 26 in Science Advances.
A molecule that could help build otherworldly life is present on Saturn’s moon Titan, researchers have discovered.
Vinyl cyanide, a compound predicted to form membranelike structures, is created in Titan’s upper atmosphere, scientists report July 28 in Science Advances. There’s enough vinyl cyanide (C2H3CN) in the moon’s liquid methane seas to make about 10 million cell-like balls per cubic centimeter of ocean, researchers calculate. On Earth, about a million bacteria are found in a cubic centimeter of ocean water near shore. “It’s very positive news for putative-Titan-life studies,” says Jonathan Lunine, a planetary scientist at Cornell University who was not involved in the new study.
Titan has no water, usually considered a prerequisite for life. Instead of water, freezing-cold Titan has liquid methane. There’s even a methane cycle that mimics Earth’s water cycle (SN: 3/21/15, p. 32). But Titan is so cold — usually about –178° Celsius — that the smallest unit of life on Earth, the cell, would shatter in the moon’s subzero seas. In 2015, Lunine and Cornell colleagues James Stevenson and Paulette Clancy proposed a way life might exist in methane. Computer simulations predicted that vinyl cyanide (also called acrylonitrile or propenenitrile) could make flexible bubbles called azotosomes that would be stable in liquid methane (SN: 4/30/16, p. 28). Those bubbles might act much as cell membranes do on Earth, sheltering genetic material and concentrating biochemical reactions needed for life. When the Cornell researchers suggested the presence of azotosomes on Titan, carbon, hydrogen and nitrogen had already been detected in abundance in the moon’s atmosphere. But no one knew whether those atoms joined to make vinyl cyanide there. The Saturn probe Cassini had detected a molecule of the right mass to be vinyl cyanide, but couldn’t definitively identify the molecule’s chemical makeup.
But evidence for the chemical compound was buried in archived data from a large radio telescope, Maureen Palmer of Catholic University of America in Washington, D.C., and colleagues discovered. Palmer, an astrochemistry and astrobiology researcher, combed data collected by the Atacama Large Millimeter/submillimeter Array, or ALMA, in Chile between February 22 and May 27, 2014.
Astronomers point ALMA at Titan to calibrate the telescope because the moon has known brightness levels, says Palmer, who also works at NASA’s Goddard Space Flight Center in Greenbelt, Md. The team used that calibration data to detect the signature of vinyl cyanide at specific wavelengths of light and calculate its abundance.
“This is a pretty secure detection,” says Ralph Lorenz, a planetary scientist at the Johns Hopkins University Applied Physics Lab in Laurel, Md.
Even with confirmation of vinyl cyanide, researchers can’t say that azotosomes form on Titan. That’s probably not something telescopes can determine, Lunine says. A probe would need to sample Titan’s seas to detect the structures.
And even detecting azotosomes would not mean there’s life on Titan, says Lorenz. The moon’s extreme cold may hamper metabolism. What’s more, no one knows whether liquid methane can take the place of water for supporting life, he says. “If I were a betting man, I’d say Titan does not have life.”
Nearly 5 percent of U.S. adults misused prescription opioids in 2015, a new study shows.
Based on the National Survey on Drug Use and Health, an in-person survey of more than 50,000 people, researchers estimate that 91.8 million, or 37.8 percent, of adults used prescription opioids in 2015. Some 11.5 million people misused the painkillers, and 1.9 million people reported opioid dependence or abuse, Beth Han of the Substance Abuse and Mental Health Services Administration in Rockville, Md., and colleagues report online August 1 in Annals of Internal Medicine. Relieving pain was the most commonly cited reason for people’s most recent episode of misuse — for 66 percent of those reporting misuse, such as using without a prescription, and nearly 49 percent of those with opioid dependence or abuse. (Respondents could report more than one reason for their last misuse.) These results underscore the need for improved pain management, the authors say.
With just weeks to go before the Great American Eclipse, scientists are finalizing years of planning to study the solar phenomenon. But it’s not too late to get involved.
“This is the first eclipse crossing over a major landmass in the era when lots of people have digital devices,” says astronomer Alex Filippenko of the University of California, Berkeley. The 120-kilometer-wide path of totality, where observers will see the moon completely cover the sun, will streak through 12 states from coast-to-coast on August 21, and the entire country will see at least a partial eclipse. So if you’re interested in collecting data on this rare celestial spectacle, there’s an app for that. Several, in fact.
Observe eclipse weather The GLOBE Program’s Observer app lets people to catalog changes in their local atmosphere that are affected by the amount of sunlight hitting Earth. Users can take pictures or enter descriptions of cloud cover, record temperatures and write in such observations as wind speed or air pressure if they have the equipment to make them.
“The eclipse allows us to see what happens when there’s a relatively abrupt drop in sunlight,” says Kristen Weaver of the GLOBE Observer program at NASA Goddard Space Flight Center in Greenbelt, Md. Even people who aren’t in the path of totality can contribute valuable data, Weaver says.
Students from kindergarten through high school will use the data in research projects through the GLOBE education program. And if enough people send in data, NASA researchers creating models of Earth’s energy budget — the balance between the energy our planet receives from the sun and sends back out into space — could also analyze the observations. Folks willing to take their eyes off the skies for a moment can record what plants and animals are doing around eclipse time using the California Academy of Sciences’ iNaturalist app.
Past eclipse-watchers have told tales of animals exhibiting nighttime behavior — such as birds falling silent or squirrels retreating to their dens — when the moon blocks the sun. The iNaturalist app could allow the first extensive examination of this phenomenon, says the Academy’s Elise Ricard.
People can use the app to note the behavior of whatever animals are around, be they pets, livestock, wildlife or even zoo animals. Some flowers also close up at night, Ricard notes, so plant observations are also encouraged.
The data could help scientists understand the extent of eclipse necessary to elicit certain responses. For instance, someone in an area where the moon covers 85 percent of the sun might notice odd animal behavior that isn’t seen by anyone in areas with only 70 percent coverage of the sun.
Record the sounds of an eclipse The sounds of nature can also change dramatically during an eclipse. Ricard remembers birds falling silent in the nearby jungle during an Australian eclipse. And Henry Winter, an astrophysicist at the Harvard-Smithsonian Center for Astrophysics in Cambridge, Mass., recalls a friend’s story of crickets starting to chirp during an eclipse.
To capture these shifting sounds, Winter launched the Eclipse Soundscapes project, which will collect recordings during the solar eclipse to provide an audio experience for the visually impaired.
Soundscapes’ reps will record at 12 national parks, and anyone with the app can add their own sound bites to the database. The app will also include a specially designed narration of what’s happening in the sky for visually impaired eclipse-goers.
Solar snapshots for science For anyone in the path of totality, there’s also the chance to participate in the Eclipse MegaMovie project, the first crowdsourced image archive of a total solar eclipse.
Viewed from any single place on the ground in the path of totality, the moon completely covers the sun for only about 2½ minutes. But by gathering images from over 1,000 trained volunteers and from members of the public snapping pics with smartphones across the country, the MegaMovie project will capture the full 90-minute duration of the solar eclipse as it crosses the continental United States.
The project will give astronomers an unprecedented view of the outer layers of the sun’s atmosphere — which aren’t blocked by the moon — during the entire eclipse.
Like the data collected by all these apps, the Eclipse MegaMovie images will be publicly available online, where they can be accessed by amateur astronomers, too. “They might notice some interesting phenomenon before professional astronomers get around to looking at the data,” Filippenko says.
It’s certainly an exciting time to be a citizen scientist. But if you do decide to participate in data collection, don’t forget to take time to put down your phone and enjoy the majesty of the eclipse.